• J Pain · May 2022

    "Combining topical agonists with the recording of event-related brain potentials to probe the functional involvement of TRPM8, TRPA1 and TRPV1 in heat and cold transduction in the human skin".

    • Arthur S Courtin and André Mouraux.
    • Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium. Electronic address: arthur.courtin@uclouvain.be.
    • J Pain. 2022 May 1; 23 (5): 754-771.

    AbstractTRP channels play a central role in the transduction of thermal and nociceptive stimuli by free nerve endings. Most of the research on these channels has been conducted in vitro or in vivo in nonhuman animals and translation of these results to humans must account for potential experimental biases and interspecific differences. This study aimed at evaluating the involvement of TRPM8, TRPA1 and TRPV1 channels in the transduction of heat and cold stimuli by the human thermonociceptive system. For this purpose, we evaluated the effects of topical agonists of these 3 channels (menthol, cinnamaldehyde and capsaicin) on the event-related brain potentials (ERPs) elicited by phasic thermal stimuli (target temperatures: 10°C, 42°C, and 60°C) selected to activate cold Aδ thermoreceptors, warm sensitive C thermoreceptors and heat sensitive Aδ polymodal nociceptors. Sixty-four participants were recruited, 16 allocated to each agonist solution group (20% menthol, 10% cinnamaldehyde, .025% capsaicin and 1% capsaicin). Participants were treated sequentially with the active solution on one forearm and vehicle only on the other forearm for 20 minutes. Menthol decreased the amplitude and increased the latency of cold and heat ERPs. Cinnamic aldehyde decreased the amplitude and increased the latency of heat but not cold ERPs. Capsaicin decreased the amplitude and increased the latency of heat ERPs and decreased the amplitude of the N2P2 complex of the cold ERPs without affecting the earlier N1 wave or the latencies of the peaks. These findings are compatible with previous evidence indicating that TRPM8 is involved in innocuous cold transduction and that TRPV1 and TRPA1 are involved in noxious heat transduction in humans. PERSPECTIVE: By chemically modulating TRPM8, TRPA1 and TRPV1 reactivity (key molecules in the transduction of temperature) and assessing how this affected EEG responses to the activation of cold thermoreceptors and heat nociceptors, we aimed at confirming the role of these channels in a functional healthy human model.Copyright © 2021 United States Association for the Study of Pain, Inc. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.