• Diagnostics (Basel) · Feb 2021

    Deep Learning for Diagnosis of Paranasal Sinusitis Using Multi-View Radiographs.

    • Yejin Jeon, Kyeorye Lee, Leonard Sunwoo, Dongjun Choi, Dong Yul Oh, Kyong Joon Lee, Youngjune Kim, Jeong-Whun Kim, Se Jin Cho, Sung Hyun Baik, Roh-Eul Yoo, Yun Jung Bae, Byung Se Choi, Cheolkyu Jung, and Jae Hyoung Kim.
    • Department of Radiology, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
    • Diagnostics (Basel). 2021 Feb 5; 11 (2).

    AbstractAccurate image interpretation of Waters' and Caldwell view radiographs used for sinusitis screening is challenging. Therefore, we developed a deep learning algorithm for diagnosing frontal, ethmoid, and maxillary sinusitis on both Waters' and Caldwell views. The datasets were selected for the training and validation set (n = 1403, sinusitis% = 34.3%) and the test set (n = 132, sinusitis% = 29.5%) by temporal separation. The algorithm can simultaneously detect and classify each paranasal sinus using both Waters' and Caldwell views without manual cropping. Single- and multi-view models were compared. Our proposed algorithm satisfactorily diagnosed frontal, ethmoid, and maxillary sinusitis on both Waters' and Caldwell views (area under the curve (AUC), 0.71 (95% confidence interval, 0.62-0.80), 0.78 (0.72-0.85), and 0.88 (0.84-0.92), respectively). The one-sided DeLong's test was used to compare the AUCs, and the Obuchowski-Rockette model was used to pool the AUCs of the radiologists. The algorithm yielded a higher AUC than radiologists for ethmoid and maxillary sinusitis (p = 0.012 and 0.013, respectively). The multi-view model also exhibited a higher AUC than the single Waters' view model for maxillary sinusitis (p = 0.038). Therefore, our algorithm showed diagnostic performances comparable to radiologists and enhanced the value of radiography as a first-line imaging modality in assessing multiple sinusitis.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.