-
Diagnostics (Basel) · Feb 2021
Deep Learning for Diagnosis of Paranasal Sinusitis Using Multi-View Radiographs.
- Yejin Jeon, Kyeorye Lee, Leonard Sunwoo, Dongjun Choi, Dong Yul Oh, Kyong Joon Lee, Youngjune Kim, Jeong-Whun Kim, Se Jin Cho, Sung Hyun Baik, Roh-Eul Yoo, Yun Jung Bae, Byung Se Choi, Cheolkyu Jung, and Jae Hyoung Kim.
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
- Diagnostics (Basel). 2021 Feb 5; 11 (2).
AbstractAccurate image interpretation of Waters' and Caldwell view radiographs used for sinusitis screening is challenging. Therefore, we developed a deep learning algorithm for diagnosing frontal, ethmoid, and maxillary sinusitis on both Waters' and Caldwell views. The datasets were selected for the training and validation set (n = 1403, sinusitis% = 34.3%) and the test set (n = 132, sinusitis% = 29.5%) by temporal separation. The algorithm can simultaneously detect and classify each paranasal sinus using both Waters' and Caldwell views without manual cropping. Single- and multi-view models were compared. Our proposed algorithm satisfactorily diagnosed frontal, ethmoid, and maxillary sinusitis on both Waters' and Caldwell views (area under the curve (AUC), 0.71 (95% confidence interval, 0.62-0.80), 0.78 (0.72-0.85), and 0.88 (0.84-0.92), respectively). The one-sided DeLong's test was used to compare the AUCs, and the Obuchowski-Rockette model was used to pool the AUCs of the radiologists. The algorithm yielded a higher AUC than radiologists for ethmoid and maxillary sinusitis (p = 0.012 and 0.013, respectively). The multi-view model also exhibited a higher AUC than the single Waters' view model for maxillary sinusitis (p = 0.038). Therefore, our algorithm showed diagnostic performances comparable to radiologists and enhanced the value of radiography as a first-line imaging modality in assessing multiple sinusitis.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.