• J. Appl. Physiol. · Jul 2021

    Regional lung viscoelastic properties in supine and prone position in a porcine model of acute respiratory distress syndrome.

    • Claude Guérin, Sam Bayat, Norbert Noury, Martin Cour, Laurent Argaud, Bruno Louis, and Nicolas Terzi.
    • Médecine Intensive-Réanimation, Groupement Hospitalier Centre, Hôpital Edouard Herriot, Lyon, France.
    • J. Appl. Physiol. 2021 Jul 1; 131 (1): 15-25.

    AbstractRegional viscoelastic properties of thoracic tissues in acute respiratory distress syndrome (ARDS) and their change with position and positive end-expiratory pressure (PEEP) are unknown. In an experimental porcine ARDS, dorsal and ventral lung (R2,L and E2,L) and chest wall (R2,cw and E2,cw) viscoelastic resistive (R) and elastic (E) parameters were measured at 20, 15, 10, and 5 cmH2O PEEP in supine and prone position. E2 and R2 were obtained by fitting the decay of pressure after end-inspiratory occlusion to the equation: Pviscmax (t) =R2 e-t/τ2, where t is the length of occlusion and τ2 time constant. E2 was equal to R2/τ2. R2,cw and E2,cw were measured from esophageal, dorsal, and ventral pleural pressures. Global R2,L and E2,L were obtained from the global transpulmonary pressure (airway pressure-esophageal pressure), and regional R2,L and E2,L from the dorsal and ventral airway pressure-pleural pressure difference. Lung ventilation was measured by electrical impedance tomography (EIT). Global R2,cw and E2,cw did not change with PEEP or position. Global R2,L [median(Q1-Q3)] was 37.1 (11.0-65.1), 5.1 (4.3-5.5), 12.1 (8.4-19.5), and 41.0 (26.6-53.5) cmH2O/L/s in supine, and 15.3 (9.1-41.9), 7.9 (5.7-11.0), 8.0 (5.1-12.1), and 12.9 (6.4-19.4) cmH2O/L in prone from 20 to 5 cmH2O PEEP (P = 0.06 for PEEP and P = 0.06 for position). Dorsal R2,L significantly and positively correlated with the amount of collapse measured with EIT. Global and regional lung and chest wall viscoelastic parameters can be described by a simple rheological model. Regional E2 and R2 were uninfluenced by PEEP and position except for PEEP on dorsal E2,L and position on dorsal E2,cw.NEW & NOTEWORTHY In a porcine model of acute respiratory distress syndrome, data were successfully fitted to a rheological model of the nonlinear behavior of viscoelastic properties of lung and chest wall at different positive end-expiratory pressure (PEEP) in the supine and prone position. Prone position tended to decrease lung viscoelastic resistive component. PEEP had a significant effect on dorsal lung viscoelastic elastance. Finally, lung viscoelastic resistance correlated with the amount of lung collapse assessed by electrical impedance tomography.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.