• J. Intern. Med. · Nov 2015

    Review

    The small leucine-rich repeat proteoglycans in tissue repair and atherosclerosis.

    • A Hultgårdh-Nilsson, J Borén, and S Chakravarti.
    • Department of Experimental Medical Science, Lund University, Lund, Sweden.
    • J. Intern. Med. 2015 Nov 1; 278 (5): 447-61.

    AbstractProteoglycans consist of a protein core with one or more covalently attached glycosaminoglycan (GAG) side chains and have multiple roles in the initiation and progression of atherosclerosis. Here we discuss the potential and known functions of a group of small leucine-rich repeat proteoglycans (SLRPs) in atherosclerosis. We focus on five SLRPs, decorin, biglycan, lumican, fibromodulin and PRELP, because these have been detected in atherosclerotic plaques or demonstrated to have a role in animal models of atherosclerosis. Decorin and biglycan are modified post-translationally by substitution with chondroitin/dermatan sulphate GAGs, whereas lumican, fibromodulin and PRELP have keratan sulphate side chains, and the core proteins have leucine-rich repeat (LRR) motifs that are characteristic of the LRR superfamily. The chondroitin/dermatan sulphate GAG side chains have been implicated in lipid retention in atherosclerosis. The core proteins are discussed here in the context of (i) interactions with collagens and their implications in tissue integrity, fibrosis and wound repair and (ii) interactions with growth factors, cytokines, pathogen-associated molecular patterns and cell surface receptors that impact normal physiology and disease processes such as inflammation, innate immune responses and wound healing (i.e. processes that are all important in plaque development and progression). Thus, studies of these SLRPs in the context of wound healing are providing clues about their functions in early stages of atherosclerosis to plaque vulnerability and cardiovascular disease at later stages. Understanding of signal transduction pathways regulated by the core protein interactions is leading to novel roles and therapeutic potential for these proteins in wound repair and atherosclerosis. © 2015 The Association for the Publication of the Journal of Internal Medicine.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…