-
- Jeffrey M Osgood, Jeffrey W Froude, Sherri P Daye, Oscar A Cabrera, Matthew R Scherer, Vincent F Capaldi, Nelson L Michael, James E Moon, Eric D Lombardini, Sheila A Peel, Karen P Peterson, Deydre S Teyhen, Clinton K Murray, and Robert J O'Connell.
- Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA.
- Mil Med. 2023 Jan 4; 188 (1-2): 158165158-165.
IntroductionAt the start of the coronavirus disease 2019 (COVID-19) pandemic, Walter Reed Army Institute of Research (WRAIR) mobilized to rapidly conduct medical research to detect, prevent, and treat the disease in order to minimize the impact of the pandemic on the health and readiness of U.S. Forces. WRAIR's major efforts included the development of the Department of Defense (DoD) COVID-19 vaccine candidate, researching novel drug therapies and monoclonal antibodies, refining and scaling-up diagnostic capabilities, evaluating the impact of viral diversity, assessing the behavioral health of Soldiers, supporting U.S. DoD operational forces overseas, and providing myriad assistance to allied nations. WRAIR personnel have also filled key roles within the whole of government response to the pandemic. WRAIR had to overcome major pandemic-related operational challenges in order to quickly execute a multimillion-dollar portfolio of COVID-19 research. Consequently, the organization learned lessons that could benefit other leaders of medical research organizations preparing for the next pandemic.Materials And MethodsWe identified lessons learned using a qualitative thematic analysis of 76 observation/recommendation pairs from across the organization. These lessons learned were organized under the Army's four pillars of readiness (staffing, training, equipping, and leadership development). To this framework, we added organizing and leading to best capture our experiences within the context of pandemic response.ResultsThe major lessons learned for organizing were: (1) the pandemic created a need to rapidly pivot to new scientific priorities; (2) necessary health and safety precautions disrupted the flow of normal science and put programs at risk of missing milestones; (3) relationships with partners and allies facilitated medical diplomacy and advancement of U.S. national military and economic goals; and (4) a successful response required interoperability within and across multiple organizations. For equipping: (1) existing infrastructure lacked sufficient capacity and technical capability to allow immediate countermeasure development; (2) critical supply chains were strained; and (3) critical information system function and capacity were suddenly insufficient under maximum remote work. For staffing and training: (1) successful telework required rapid shifts in management, engagement, and accountability methods; and (2) organizational policies and processes had to adapt quickly to support remote staffing. For leading and leadership development (1) engaged, hopeful, and empathetic leadership made a difference; and (2) the workforce benefitted from concerted leadership communication that created a shared understanding of shifting priorities as well as new processes and procedures.ConclusionsAn effective pandemic response requires comprehensive institutional preparedness that facilitates flexibility and surge capacity. The single most important action leaders of medical research organizations can take to prepare for the next pandemic is to develop a quick-reaction force that would activate under prespecified criteria to manage reprioritization of all science and support activities to address pandemic response priorities at the velocity of relevance.Published by Oxford University Press on behalf of the Association of Military Surgeons of the United States 2021. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.