• Am. J. Chin. Med. · Jan 2016

    Tetrahydroxystilbene Glucoside Inhibits Excessive Autophagy and Improves Microvascular Endothelial Dysfunction in Prehypertensive Spontaneously Hypertensive Rats.

    • Qianqian Dong, Wenjuan Xing, Feng Fu, Zhenghua Liu, Jie Wang, Xiangyan Liang, Xuanxuan Zhou, Qian Yang, Wei Zhang, Feng Gao, Siwang Wang, and Haifeng Zhang.
    • * Department of Natural Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, P.R. China.
    • Am. J. Chin. Med. 2016 Jan 1; 44 (7): 1393-1412.

    AbstractAutophagy exists in vascular endothelial cells, but the relationship between autophagy and blood vessel dysfunction in hypertension remains elusive. This study aimed to investigate role of autophagy in vascular endothelial dysfunction in prehypertension and hypertension and the underlying mechanisms involved. Furthermore, we sought to determine if and how tetrahydroxystilbene glucoside (TSG), a resveratrol analogue and active ingredient of Polygonum multiflorum Thunb used for its cardiovascular protective properties in traditional Chinese medicine, influences vascular endothelial function. Male spontaneously hypertensive rats (SHRs) aged 4 weeks (young) and 12 weeks (adult) were studied and the vascular function of isolated aorta and mesenteric artery was assessed in vitro. Compared with Wistar Kyoto rats (WKY), young and adult SHRs showed endothelial dysfunction of the aorta and mesenteric artery, along with decreased pAkt, pmTOR, and autophagic marker protein p62 and increased LC3 II/I in microvascular but not aortic tissues. TSG administration for 14 days significantly improved mesenteric vascular endothelial function, increased levels of pAkt and pmTOR, and decreased autophagy. Pretreatment of young SHRs with the mTOR inhibitor rapamycin blocked the antiautophagic and vasodilative effects of TSG. Moreover, TSG significantly activated Akt-mTOR signaling in HUVECs and reduced the autophagic levels in vitro, which were almost completely blocked by rapamycin. In summary, mesenteric endothelial dysfunction in prehypertensive SHRs was at least partly attributable to excessive autophagy in vascular tissues. TSG partly restored microvascular endothelial dysfunction through activating the Akt/mTOR pathway, which consequently suppressed autophagy, indicating that TSG could be potentially applied to protect vascular function against subclinical changes in prehypertension.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.