• Cochrane Db Syst Rev · Dec 2021

    Review Meta Analysis

    Monitoring strategies for clinical intervention studies.

    • Katharina Klatte, Christiane Pauli-Magnus, Sharon B Love, Matthew R Sydes, Pascal Benkert, Nicole Bruni, Hannah Ewald, Patricia Arnaiz Jimenez, Marie Mi Bonde, and Matthias Briel.
    • Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.
    • Cochrane Db Syst Rev. 2021 Dec 8; 12 (12): MR000051MR000051.

    BackgroundTrial monitoring is an important component of good clinical practice to ensure the safety and rights of study participants, confidentiality of personal information, and quality of data. However, the effectiveness of various existing monitoring approaches is unclear. Information to guide the choice of monitoring methods in clinical intervention studies may help trialists, support units, and monitors to effectively adjust their approaches to current knowledge and evidence.ObjectivesTo evaluate the advantages and disadvantages of different monitoring strategies (including risk-based strategies and others) for clinical intervention studies examined in prospective comparative studies of monitoring interventions.Search MethodsWe systematically searched CENTRAL, PubMed, and Embase via Ovid for relevant published literature up to March 2021. We searched the online 'Studies within A Trial' (SWAT) repository, grey literature, and trial registries for ongoing or unpublished studies.Selection CriteriaWe included randomized or non-randomized prospective, empirical evaluation studies of different monitoring strategies in one or more clinical intervention studies. We applied no restrictions for language or date of publication.Data Collection And AnalysisWe extracted data on the evaluated monitoring methods, countries involved, study population, study setting, randomization method, and numbers and proportions in each intervention group. Our primary outcome was critical and major monitoring findings in prospective intervention studies. Monitoring findings were classified according to different error domains (e.g. major eligibility violations) and the primary outcome measure was a composite of these domains. Secondary outcomes were individual error domains, participant recruitment and follow-up, and resource use. If we identified more than one study for a comparison and outcome definitions were similar across identified studies, we quantitatively summarized effects in a meta-analysis using a random-effects model. Otherwise, we qualitatively summarized the results of eligible studies stratified by different comparisons of monitoring strategies. We used the GRADE approach to assess the certainty of the evidence for different groups of comparisons.Main ResultsWe identified eight eligible studies, which we grouped into five comparisons. 1. Risk-based versus extensive on-site monitoring: based on two large studies, we found moderate certainty of evidence for the combined primary outcome of major or critical findings that risk-based monitoring is not inferior to extensive on-site monitoring. Although the risk ratio was close to 'no difference' (1.03 with a 95% confidence interval [CI] of 0.81 to 1.33, below 1.0 in favor of the risk-based strategy), the high imprecision in one study and the small number of eligible studies resulted in a wide CI of the summary estimate. Low certainty of evidence suggested that monitoring strategies with extensive on-site monitoring were associated with considerably higher resource use and costs (up to a factor of 3.4). Data on recruitment or retention of trial participants were not available. 2. Central monitoring with triggered on-site visits versus regular on-site visits: combining the results of two eligible studies yielded low certainty of evidence with a risk ratio of 1.83 (95% CI 0.51 to 6.55) in favor of triggered monitoring intervention. Data on recruitment, retention, and resource use were not available. 3. Central statistical monitoring and local monitoring performed by site staff with annual on-site visits versus central statistical monitoring and local monitoring only: based on one study, there was moderate certainty of evidence that a small number of major and critical findings were missed with the central monitoring approach without on-site visits: 3.8% of participants in the group without on-site visits and 6.4% in the group with on-site visits had a major or critical monitoring finding (odds ratio 1.7, 95% CI 1.1 to 2.7; P = 0.03). The absolute number of monitoring findings was very low, probably because defined major and critical findings were very study specific and central monitoring was present in both intervention groups. Very low certainty of evidence did not suggest a relevant effect on participant retention, and very low certainty evidence indicated an extra cost for on-site visits of USD 2,035,392. There were no data on recruitment. 4. Traditional 100% source data verification (SDV) versus targeted or remote SDV: the two studies assessing targeted and remote SDV reported findings only related to source documents. Compared to the final database obtained using the full SDV monitoring process, only a small proportion of remaining errors on overall data were identified using the targeted SDV process in the MONITORING study (absolute difference 1.47%, 95% CI 1.41% to 1.53%). Targeted SDV was effective in the verification of source documents, but increased the workload on data management. The other included study was a pilot study, which compared traditional on-site SDV versus remote SDV and found little difference in monitoring findings and the ability to locate data values despite marked differences in remote access in two clinical trial networks. There were no data on recruitment or retention. 5. Systematic on-site initiation visit versus on-site initiation visit upon request: very low certainty of evidence suggested no difference in retention and recruitment between the two approaches. There were no data on critical and major findings or on resource use.Authors' ConclusionsThe evidence base is limited in terms of quantity and quality. Ideally, for each of the five identified comparisons, more prospective, comparative monitoring studies nested in clinical trials and measuring effects on all outcomes specified in this review are necessary to draw more reliable conclusions. However, the results suggesting risk-based, targeted, and mainly central monitoring as an efficient strategy are promising. The development of reliable triggers for on-site visits is ongoing; different triggers might be used in different settings. More evidence on risk indicators that identify sites with problems or the prognostic value of triggers is needed to further optimize central monitoring strategies. In particular, approaches with an initial assessment of trial-specific risks that need to be closely monitored centrally during trial conduct with triggered on-site visits should be evaluated in future research.Copyright © 2021 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.