• Injury · Feb 2022

    Hyperbaric oxygen therapy does not alleviate tourniquet-induced acute ischemia-reperfusion injury in mouse skeletal muscles.

    • Devin M Frisby, Huiyin Tu, Junliang Qian, Dongze Zhang, Aaron N Barksdale, Michael C Wadman, Jeffrey S Cooper, and Yu-Long Li.
    • Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
    • Injury. 2022 Feb 1; 53 (2): 368-375.

    AbstractDuring tourniquet application, blood flow is restricted to a limb to stop excessive limb hemorrhage in a trauma setting and to create a bloodless operating field in the surgical setting. During tourniquet-related ischemia, aerobic respiration stops, and ATP is depleted, and during subsequent reperfusion, there is an increase in reactive oxygen species (ROS) production and other endogenous substances, which leads to acute ischemia-reperfusion (IR) injuries, including tissue necrosis and skeletal muscle contractile dysfunction. Hyperbaric oxygen (HBO) therapy can increase the arterial oxygen tension in the tissues of patients with general hypoxia/anoxia, including carbon monoxide poisoning, circulatory arrest, and cerebral and myocardial ischemia. Here, we studied the protective effects of HBO pretreatment with 100% oxygen at 2.5 ATA against tourniquet/IR injury in mice. After one hour of HBO therapy with 100% oxygen at 2.5 ATA was administered to C57/BL6 mice, a rubber band was placed at the hip joint of the unilateral hindlimb to induce 3 h of ischemia and then released for 48 h of reperfusion. We analyzed gastrocnemius muscle morphology and contractile function and measured the levels of ATP and ROS accumulation in the muscles. HBO pretreatment did not improve tourniquet/IR-injured gastrocnemius muscle morphology and muscle contraction. Tourniquet/IR mice with HBO pretreatment showed no increase in ATP levels in IR tissues, but they did have a decreased amount of ROS accumulation in the muscles, compared to IR mice with no HBO pretreatment. These data suggest that one hour of HBO pretreatment with 100% oxygen at 2.5 ATA increases the antioxidant response to lower ROS accumulation but does not increase ATP levels in IR muscles and improve tourniquet/IR-injured muscle morphology and contractile function.Copyright © 2021 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.