• Hepatology · Oct 2019

    External Validation of a Pretransplant Biomarker Model (REVERSE) Predictive of Renal Recovery After Liver Transplantation.

    • Josh Levitsky, Sumeet K Asrani, Michael Abecassis, Richard Ruiz, Linda W Jennings, and Goran Klintmalm.
    • Division of Gastroenterology and Hepatology, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL.
    • Hepatology. 2019 Oct 1; 70 (4): 1349-1359.

    AbstractIn patients with end-stage liver disease, the ability to predict recovery of renal function following liver transplantation (LT) remains elusive. However, several important clinical decisions depend on whether renal dysfunction is recoverable after LT. We used a cohort of patients undergoing LT to independently validate a published pre-LT model predictive of post-transplant renal recovery (Renal Recovery Assessment at Liver Transplant [REVERSE]: high osteopontin [OPN] and tissue inhibitor of metalloproteinases-1 [TIMP-1] levels, age < 57, no diabetes). Serum samples pre-LT and 4-12 weeks post-LT (n = 117) were analyzed for kidney injury proteins from three groups of recipients: (1) estimated glomerular filtration rate (eGFR) < 30 mL/minute/1.73 m2 prior to and after LT (irreversible acute kidney injury [AKI]), (2) eGFR < 30 mL/minute/1.73 m2 prior to LT and >50 mL/minute/1.73 m2 after LT (reversible AKI [rAKI]) (3) eGFR > 50 mL/minute/1.73 m2 prior to and after LT (no AKI). In patients with elevated pre-LT serum levels of OPN and TIMP-1, recovery of renal function correlated with decreases in the level of both proteins. At 4 weeks post-LT (n = 77 subset), the largest decline in OPN and TIMP-1 was seen in the rAKI group. Validation of the REVERSE model in this independent data set had high area under the curve (0.78) in predicting full post-LT renal recovery (sensitivity 0.86, specificity 0.6, positive predictive value 0.81, negative predictive value 0.69). Our eGFR findings were confirmed using measured GFR. Conclusion: The REVERSE model, derived from an initial training set combining plasma biomarkers and clinical characteristics, demonstrated excellent external validation performance characteristics in an independent patient cohort using serum samples. Among patients with kidney injury pre-LT, the predictive ability of this model may prove beneficial in clinical decision-making both prior to and following transplantation.© 2019 by the American Association for the Study of Liver Diseases.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.