-
- Stephan Müller, Laura Herde, Oliver Preische, Anja Zeller, Petra Heymann, Sibylle Robens, Ulrich Elbing, and Christoph Laske.
- Department of Psychiatry and Psychotherapy, Eberhard Karls University, Tübingen, Germany. stephan.mueller@med.uni-tuebingen.de.
- Sci Rep. 2019 Mar 5; 9 (1): 3543.
AbstractThe early detection of cognitive impairment or dementia is in the focus of current research as the amount of cognitively impaired individuals will rise intensely in the next decades due to aging population worldwide. Currently available diagnostic tools to detect mild cognitive impairment (MCI) or dementia are time-consuming, invasive or expensive and not suitable for wide application as required by the high number of people at risk. Thus, a fast, simple and sensitive test is urgently needed to enable an accurate detection of people with cognitive dysfunction and dementia in the earlier stages to initiate specific diagnostic and therapeutic interventions. We examined digital Clock Drawing Test (dCDT) kinematics for their clinical utility in differentiating patients with amnestic MCI (aMCI) or mild Alzheimer's dementia (mAD) from healthy controls (HCs) and compared it with the diagnostic value of the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) neuropsychological battery total score. Data of 381 participants (138 patients with aMCI, 106 patients with mAD and 137 HCs) was analyzed in the present study. All participants performed the clock drawing test (CDT) on a tablet computer and underwent the CERAD test battery and depression screening. CERAD total scores were calculated by subtest summation, excluding MMSE scores. All tablet variables (i.e. time in air, time on surface, total time, velocity, pressure, pressure/velocity relation, strokes per minute, time not painting, pen-up stroke length, pen-up/pen-down relation, and CDT score) during dCDT performance were entered in a forward stepwise logistic regression model to assess, which parameters best discriminated between aMCI or mAD and HC. Receiver operating characteristics (ROC) curves were constructed to visualize the specificity in relation to the sensitivity of dCDT variables against CERAD total scores in categorizing the diagnostic groups. dCDT variables provided a slightly better diagnostic accuracy of 81.5% for discrimination of aMCI from HCs than using CERAD total score (accuracy 77.5%). In aMCI patients with normal CDT scores, both dCDT (accuracy 78.0%) and CERAD total scores (accuracy 76.0%) were equally accurate in discriminating against HCs. Finally, in differentiating patients with mAD from healthy individuals, accuracy of both dCDT (93.0%) and CERAD total scores (92.3%) was excellent. Our findings suggest that dCDT is a suitable screening tool to identify early cognitive dysfunction. Its performance is comparable with the time-consuming established psychometric measure (CERAD test battery).
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.