• Cancer research · Sep 2001

    Apoptotic signaling in polyamine analogue-treated SK-MEL-28 human melanoma cells.

    • Y Chen, D L Kramer, P Diegelman, S Vujcic, and C W Porter.
    • Grace Cancer Drug Center, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
    • Cancer Res. 2001 Sep 1; 61 (17): 6437-44.

    AbstractN(1),N(11)-Diethylnorspermine (DENSPM) is a polyamine analogue with clinicalrelevance as an experimental anticancer agent and the ability to elicit a profound apoptotic response in certain cell types. Here, we characterize the polyamine effects and apoptotic signaling events initiated by treatment of SK-MEL-28 human melanoma with 10 microM DENSPM. Maximal induction of the polyamine catabolic enzyme spermidine/spermine N(1)-acetyltransferase (SSAT) and polyamine pool depletion were seen by 16 h, whereas early apoptosis was first apparent at 36 h. Intermediate events related to apoptotic signaling were sought between 16 and 36 h. A loss of mitochondrial transmembrane potential (Deltapsi(m)) beginning at 24 h was followed by the release of cytochrome c into the cytosol at 30 h. Loss of mitochondrial integrity was accompanied by caspase-3 activation and poly(ADP-ribose) polymerase digestion from 30 to 36 h. The caspase inhibitor Z-Asp-2,6-dichlorobenzoyloxymethylketone rendered cells resistant to analogue-induced caspase-3 activation and reduced the apoptotic response in a dose-dependent manner. Because polyamine reduction achieved by inhibitors of polyamine biosynthesis inhibited growth but did not cause apoptosis, we looked for alternative polyamine-related events, focusing on induction of SSAT. Three DENSPM analogues that differentially induced SSAT activity but similarly depleted polyamine pools revealed a close correlation between enzyme induction and cytochrome c release, caspase activation, and apoptosis. Dose-dependent inhibition of polyamine oxidase, an enzyme that oxidizes acetylated polyamines generated by SSAT and releases toxic by-products such as H(2)O(2) and aldehydes, prevented cytochrome c release, caspase activation, and apoptosis. Taken together, the findings indicate that DENSPM-induced apoptosis is at least partially initiated via massive induction of SSAT and related oxidative events and subsequently mediated by the mitochondrial apoptotic signaling pathway as indicated by cytochrome c release and caspase activation.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.