• Shock · Jan 2022

    A New Time-Window Prediction Model For Traumatic Hemorrhagic Shock Based on Interpretable Machine Learning.

    • Yuzhuo Zhao, Lijing Jia, Ruiqi Jia, Hui Han, Cong Feng, Xueyan Li, Zijian Wei, Hongxin Wang, Heng Zhang, Shuxiao Pan, Jiaming Wang, Xin Guo, Zheyuan Yu, Xiucheng Li, Zhaohong Wang, Wei Chen, Jing Li, and Tanshi Li.
    • Department of Emergency, The First Medical Center of Chinese PLA General Hospital, Beijing, China.
    • Shock. 2022 Jan 1; 57 (1): 485648-56.

    AbstractEarly warning prediction of traumatic hemorrhagic shock (THS) can greatly reduce patient mortality and morbidity. We aimed to develop and validate models with different stepped feature sets to predict THS in advance. From the PLA General Hospital Emergency Rescue Database and Medical Information Mart for Intensive Care III, we identified 604 and 1,614 patients, respectively. Two popular machine learning algorithms (i.e., extreme gradient boosting [XGBoost] and logistic regression) were applied. The area under the receiver operating characteristic curve (AUROC) was used to evaluate the performance of the models. By analyzing the feature importance based on XGBoost, we found that features in vital signs (VS), routine blood (RB), and blood gas analysis (BG) were the most relevant to THS (0.292, 0.249, and 0.225, respectively). Thus, the stepped relationships existing in them were revealed. Furthermore, the three stepped feature sets (i.e., VS, VS + RB, and VS + RB + sBG) were passed to the two machine learning algorithms to predict THS in the subsequent T hours (where T = 3, 2, 1, or 0.5), respectively. Results showed that the XGBoost model performance was significantly better than the logistic regression. The model using vital signs alone achieved good performance at the half-hour time window (AUROC = 0.935), and the performance was increased when laboratory results were added, especially when the time window was 1 h (AUROC = 0.950 and 0.968, respectively). These good-performing interpretable models demonstrated acceptable generalization ability in external validation, which could flexibly and rollingly predict THS T hours (where T = 0.5, 1) prior to clinical recognition. A prospective study is necessary to determine the clinical utility of the proposed THS prediction models.Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the Shock Society.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.