• Shock · Feb 2022

    ETS-Related Gene Activation Preserves Adherens Junctions and Permeability in Microvascular Endothelial Cells.

    • Binu Tharakan, Felicia A Hunter, Saravanakumar Muthusamy, Sonya Randolph, Crystal Byrd, Veena N Rao, E Shyam P Reddy, and Ed W Childs.
    • Department of Surgery, Morehouse School of Medicine, Atlanta, Georgia.
    • Shock. 2022 Feb 1; 57 (2): 309315309-315.

    AbstractERG (ETS-related gene) is a member of the ETS (Erythroblast-transformation specific) family of transcription factors abundantly present in vascular endothelial cells. Recent studies demonstrate that ERG has important roles in blood vessel stability and angiogenesis. However, it is unclear how ERG is potentially involved in microvascular barrier functions and permeability. A wide variety of diseases and clinical conditions including trauma-hemorrhagic shock and burn injury are associated with microvascular dysfunctions, which causes excessive microvascular permeability, tissue edema and eventually, multiple organ dysfunction and death. The main purpose of this study was to determine the specific role of ERG in regulating microvascular permeability in human lung microvascular endothelial cells (HLMEC) and to evaluate if exogenous ERG will protect the barrier. The HLMECs were grown on Transwell inserts as monolayers and were transfected with ERG CRISPR/cas9 knockdown plasmid, ERG CRISPR activation plasmid, recombinant ERG protein or their respective controls. Recombinant vascular endothelial growth factor (VEGF) was used as an inducer of permeability for evaluating the effect of ERG activation on permeability. Changes in barrier integrity and permeability were studied using monolayer permeability assay and immunofluorescence of adherens junction proteins (VE-cadherin and β-catenin) respectively. CRISPR/cas9-based ERG knockdown as well as VEGF treatment induced monolayer hyperpermeability, VE-cadherin, and β-catenin junctional relocation and cytoskeletal F-actin stress fiber formation. CRISPR based ERG activation and recombinant ERG transfection attenuated VEGF-induced monolayer hyperpermeability. ERG activation preserved the adherens junctions and cytoskeleton. These results demonstrate that ERG is a potent regulator of barrier integrity and permeability in human lung microvascular endothelial cells and endogenously or exogenously enhancing ERG provides protection against barrier dysfunction and hyperpermeability.Copyright © 2021 by the Shock Society.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.