• Military medicine · Oct 2022

    Review

    Detecting Soldiers' Fatigue Using Eye-Tracking Glasses: Practical Field Applications and Research Opportunities.

    • Theresa Schweizer, Thomas Wyss, and Rahel Gilgen-Ammann.
    • Monitoring, Swiss Federal Institute of Sport Magglingen (SFISM), Macolin 2532, Switzerland.
    • Mil Med. 2022 Oct 29; 187 (11-12): e1330e1337e1330-e1337.

    IntroductionObjectively determining soldiers' fatigue levels could help prevent injuries or accidents resulting from inattention or decreased alertness. Eye-tracking technologies, such as optical eye tracking (OET) and electrooculography (EOG), are often used to monitor fatigue. Eyeblinks-especially blink frequency and blink duration-are known as easily observable and valid biomarkers of fatigue. Currently, various eye trackers (i.e., eye-tracking glasses) are available on the market using either OET or EOG technologies. These wearable eye trackers offer several advantages, including unobtrusive functionality, practicality, and low costs. However, several challenges and limitations must be considered when implementing these technologies in the field to monitor fatigue levels. This review investigates the feasibility of eye tracking in the field focusing on the practical applications in military operational environments.Materials And MethodThis paper summarizes the existing literature about eyeblink dynamics and available wearable eye-tracking technologies, exposing challenges and limitations, as well as discussing practical recommendations on how to improve the feasibility of eye tracking in the field.ResultsSo far, no eye-tracking glasses can be recommended for use in a demanding work environment. First, eyeblink dynamics are influenced by multiple factors; therefore, environments, situations, and individual behavior must be taken into account. Second, the glasses' placement, sunlight, facial or body movements, vibrations, and sweat can drastically decrease measurement accuracy. The placement of the eye cameras for the OET and the placement of the electrodes for the EOG must be chosen consciously, the sampling rate must be minimal 200 Hz, and software and hardware must be robust to resist any factors influencing eye tracking.ConclusionMonitoring physiological and psychological readiness of soldiers, as well as other civil professionals that face higher risks when their attention is impaired or reduced, is necessary. However, improvements to eye-tracking devices' hardware, calibration method, sampling rate, and algorithm are needed in order to accurately monitor fatigue levels in the field.© The Association of Military Surgeons of the United States 2021.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.