-
Randomized Controlled Trial
Correlation of Cerebral and Subcutaneous Glycerol in Severe Traumatic Brain Injury and Association with Tissue Damage.
- Linda Hägglund, Magnus Olivecrona, and KoskinenLars-Owe DLD0000-0003-3528-8502Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden. Lars-Owe.Koskinen@umu.se..
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden.
- Neurocrit Care. 2022 Jun 1; 36 (3): 993-1001.
BackgroundThis study is a substudy of a prospective consecutive double-blinded randomized study on the effect of prostacyclin in severe traumatic brain injury (sTBI). The aims of the present study were to investigate whether there was a correlation between brain and subcutaneous glycerol levels and whether the ratio of interstitial glycerol in the brain and subcutaneous tissue (glycerolbrain/sc) was associated with tissue damage in the brain, measured by using the Rotterdam score, S-100B, neuron-specific enolase (NSE), the Injury Severity Score (ISS), the Acute Physiology and Chronic Health Evaluation Score (APACHE II), and trauma type. A potential association with clinical outcome was explored.MethodsPatients with sTBI aged 15-70 years presenting with a Glasgow Coma Scale Score ≤ 8 were included. Brain and subcutaneous adipose tissue glycerol levels were measured through microdialysis in 48 patients, of whom 42 had complete data for analysis. Brain tissue damage was also evaluated by using the Rotterdam classification of brain computed tomography scans and the biochemical biomarkers S-100B and NSE.ResultsIn 60% of the patients, a positive relationship in glycerolbrain/sc was observed. Patients with a positive correlation of glycerolbrain/sc had slightly higher brain glycerol levels compared with the group with a negative correlation. There was no significant association between the computed tomography Rotterdam score and glycerolbrain/sc. S-100B and NSE were associated with the profile of glycerolbrain/sc. Our results cannot be explained by the general severity of the trauma as measured by using the Injury Severity Score or Acute Physiology and Chronic Health Evaluation Score.ConclusionsWe have shown that peripheral glycerol may flux into the brain. This effect is associated with worse brain tissue damage. This flux complicates the interpretation of brain interstitial glycerol levels. We remind the clinicians that a damaged blood-brain barrier, as seen in sTBI, may alter the concentrations of various substances, including glycerol in the brain. Awareness of this is important in the interpretation of the data bedside as well in research.© 2021. The Author(s).
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.