• J Cardiovasc Comput Tomogr · Jan 2013

    Comparative Study

    Very low-dose coronary artery calcium scanning with high-pitch spiral acquisition mode: comparison between 120-kV and 100-kV tube voltage protocols.

    • Mohamed Marwan, Carina Mettin, Tobias Pflederer, Martin Seltmann, Annika Schuhbäck, Gerd Muschiol, Dieter Ropers, Werner G Daniel, and Stephan Achenbach.
    • Department of Cardiology, University of Erlangen, Ulmenweg 18, 91054 Erlangen, Germany. mohamedmarwan@yahoo.com
    • J Cardiovasc Comput Tomogr. 2013 Jan 1; 7 (1): 32-8.

    BackgroundEffective radiation dose from a single coronary artery calcification CT scan can range from 0.8 to 10.5 mSv, depending on the protocol. Reducing the effective radiation dose to reasonable levels without affecting diagnostic image quality can result in substantial dose reduction in CT.ObjectivesWe prospectively compared tube voltages of 120 and 100 kV in a low-dose CT acquisition protocol for measuring coronary artery calcified plaque with prospectively electrocardiogram (ECG)-triggered high-pitch spiral acquisition.MethodsIn 150 consecutive patients, measurement of coronary artery calcified plaque was performed with prospectively ECG-triggered high-pitch spiral acquisition. Imaging was first done with tube voltage of 120 kV voltage and subsequently repeated with 100 kV and otherwise unchanged parameters. CT was performed with a dual-source CT system with 280 milliseconds of rotation time, 2 × 128 slices, pitch of 3.4, triggered at 60% of the R-R interval. Tube current for both protocols was set at 80 mAs. With the use of a medium sharp reconstruction kernel (Siemens B35f), cross-sectional images were reconstructed with 3.0-mm slice thickness and 1.5-mm increment. Agatston scores were determined per patient for both scan settings by 2 independent readers with the use of a standard threshold of 130 HU for calcium detection. In addition, the Agatston score was calculated with a previously proposed threshold of 147 HU for 100-kV acquisitions.ResultsMean image noise was 20 ± 5 and 27 ± 7 for 120 and 100 kV, respectively (P < 0.0001). Mean dose length product was 24 ± 6 cm · cGy for the 120-kV protocol and 14 ± 4 cm · cGy for the 100-kV protocol, corresponding to average estimated effective doses of 0.3 and 0.2 mSv (P < 0.0001). Five patients were excluded from the analysis. In the remaining 145 patients, using the standard tube voltage of 120 kV, any coronary calcium was detected in 76 identical patients by both observers. In 75 of these patients, calcium was also identified by both observers in 100-kV data sets, whereas 1 patient was scored negative by 1 reader and was assigned an Agatston score of 0.7 (threshold, 130 HU) and 0.2 (threshold, 147 HU) by the other. Interobserver disagreement for assigning a patient a zero Agatston score was the same for both scan settings (each 4 patients). The mean Agatston scores for 120-kV and 100-kV (threshold, 147 HU) scans were 105 ± 245 (range, 0-1865) and 116 ± 261 (range, 0-1917), respectively (P < 0.0001). Bland-Altman analysis indicated a systematic overestimation of the Agatston score with tube voltage of 100 kV and threshold of 147 HU (mean difference, 11; 95% limits of agreement, 62 to -40). Similar results were observed for coronary calcium volume scores.ConclusionHigh-pitch spiral acquisition allows coronary calcium scoring with effective doses below 0.5 mSv. The use of 100-kV tube voltage further reduces effective radiation dose compared with the standard of 120 kV; however, it leads to significant overestimation of the Agatston score when the standard threshold of 130 HU is used. Adjusting the threshold to 147 HU leads to a better agreement compared with standard 120 kV protocols yet with a remaining systematic bias toward overestimation of the Agatston score. For high-pitch spiral acquisition mode, effective radiation dose reduction when using a 100-kV setting is minimal compared with the standard 120-kV setting and may be considered nonsignificant in a clinical setting.Copyright © 2013 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.