• Bone · Sep 1998

    Modification of the in vivo four-point loading model for studying mechanically induced bone adaptation.

    • M R Forwood, M B Bennett, A R Blowers, and R L Nadorfi.
    • Department of Anatomical Sciences, University of Queensland, Brisbane, Australia. m.forwood@mailbox.uq.edu.au
    • Bone. 1998 Sep 1; 23 (3): 307-10.

    AbstractWe modified the noninvasive, in vivo technique for strain application in the tibiae of rats (Turner et al., Bone 12:73-79, 1991). The original model applies four-point bending to right tibiae via an open-loop, stepper-motor-driven spring linkage. Depending on the magnitude of applied load, the model produces new bone formation at periosteal (Ps) or endocortical surfaces (Ec.S). Due to the spring linkage, however, the range of frequencies at which loads can be applied is limited. The modified system replaces this design with an electromagnetic vibrator. A load transducer in series with the loading points allows calibration, the loaders' position to be adjusted, and cyclic loading completed under load control as a closed servo-loop. Two experiments were conducted to validate the modified system: (1) a strain gauge was applied to the lateral surface of the right tibia of 5 adult female rats and strains measured at applied loads from 10 to 60 N; and (2) the bone formation response was determined in 28 adult female Sprague-Dawley rats. Loading was applied as a haversine wave with a frequency of 2 Hz for 18 sec, every second day for 10 days. Peak bending loads were applied at 33, 40, 52, and 64 N, and a sham-loading group was included at 64 N. Strains in the tibiae were linear between 10 and 60 N, and the average peak strain at the Ps.S at 60 N was 2664 +/- 250 microstrain, consistent with the results of Turner's group. Lamellar bone formation was stimulated at the Ec.S by applied bending, but not by sham loading. Bending strains above a loading threshold of 40 N increased Ec lamellar bone formation rate, bone forming surface, and mineral apposition rate with a dose response similar to that reported by Turner et al. (J Bone Miner Res 9:87-97, 1994). We conclude that the modified loading system offers precision for applied loads of between 0 and 70 N, versatility in the selection of loading rates up to 20 Hz, and a reproducible bone formation response in the rat tibia. Adjustment of the loader also enables study of mechanical usage in murine tibia, an advantage with respect to the increasing variety of transgenic strains available in bone and mineral research.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…