• Cochrane Db Syst Rev · Dec 2021

    Review

    Angiotensin-converting enzyme (ACE) inhibitors for proteinuria and microalbuminuria in people with sickle cell disease.

    • Teguh Haryo Sasongko and Srikanth Nagalla.
    • Perdana University RCSI School of Medicine, Perdana University (PU), Selangor, Malaysia.
    • Cochrane Db Syst Rev. 2021 Dec 21; 12 (12): CD009191CD009191.

    BackgroundSickle cell disease is a group of disorders characterized by deformation of erythrocytes. Renal damage is a frequent complication in sickle cell disease as a result of long-standing anemia and disturbed circulation through the renal medullary capillaries. Due to the improvement in life expectancy of people with sickle cell disease, there has been a corresponding significant increase in the incidence of renal complications. Microalbuminuria and proteinuria are noted to be a strong predictor of subsequent renal failure. There is extensive experience and evidence with angiotensin-converting enzyme (ACE) inhibitors over many years in a variety of clinical situations for patients who do not have sickle cell disease, but their effect in people with this disease is unknown. It is common practice to administer ACE inhibitors for sickle nephropathy due to their renoprotective properties; however, little is known about their effectiveness and safety in this setting. This is an update of a Cochrane Review first published in 2013 and 2015.ObjectivesTo determine the effectiveness of ACE inhibitor administration in people with sickle cell disease for decreasing intraglomerular pressure, microalbuminuria and proteinuria and to to assess the safety of ACE inhibitors as pertains to their adverse effects.Search MethodsThe authors searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Hameoglobinopathies Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings. Date of the most recent search: 18 October 2021. We also searched clinical trial registries. Date of the most recent search: 22 August 2021.Selection CriteriaRandomized or quasi-randomized controlled trials of ACE inhibitors designed to reduce microalbuminuria and proteinuria in people with sickle cell disease compared to either placebo or standard treatment regimen.Data Collection And AnalysisThree authors independently applied the inclusion criteria in order to select studies for inclusion in the review. Two authors assessed the risk of bias of studies and extracted data and the third author verified these assessments.Main ResultsSeven studies were identified through the searches. Six studies were excluded. The included study randomized 22 participants (7 males and 15 females) having proteinuria or microalbuminuria with sickle cell disease and treated the participants for six months (median length of follow up of three months) with captopril or placebo. Overall, the certainty of the evidence provided in this review was very low, since most risk of bias domains were judged to have either an unclear or a high risk of bias. Because of this, we are uncertain whether captopril makes any difference, in total urinary albumin excretion (at six months) as compared to the placebo group, although it yielded a mean difference of -49.00 (95% confidence interval (CI) -124.10 to 26.10) or in the absolute change score, although it yielded a mean difference of -63.00 (95% CI -93.78 to -32.22). At six months albumin excretion in the captopril group was noted to decrease from baseline by a mean (standard deviation) of 45 (23) mg/day and the placebo group was noted to increase by 18 (45) mg/day. Serum creatinine and potassium levels were reported constant throughout the study (very low-certainty evidence). The potential for inducing hypotension should be highlighted; the study reported a decrease of 8 mmHg in systolic pressure and 5 mmHg in diastolic and mean blood pressure (very low-certainty evidence).Authors' ConclusionsOverall, we judged the certainty of the evidence to be very low. The included study selectively reported its results, was not powered to detect a group difference, should it exist, and otherwise did not offer enough information to allow us to judge the bias inherent in the study. Indirectness (in relation to the limited age and type of population included) and imprecision (wide confidence intervals around the effect estimate) were observed. More long-term studies involving multiple centers and larger cohorts using a randomized-controlled design are warranted, especially among the pediatric age group. Detailed reporting of each outcome measure is necessary to allow a clear cut interpretation in a systematic review. One of the difficulties encountered in this review was the lack of detailed data reported in the included study. Overall, we judged the certainty of this evidence to be very low.Copyright © 2021 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.