• Bmc Med Inform Decis · Dec 2020

    Prediction of in-hospital mortality in patients on mechanical ventilation post traumatic brain injury: machine learning approach.

    • Ahmad Abujaber, Adam Fadlalla, Diala Gammoh, Husham Abdelrahman, Monira Mollazehi, and Ayman El-Menyar.
    • Assistant Executive Director of Nursing, Hamad Medical Corporation, Doha, Qatar.
    • Bmc Med Inform Decis. 2020 Dec 14; 20 (1): 336.

    BackgroundThe study aimed to introduce a machine learning model that predicts in-hospital mortality in patients on mechanical ventilation (MV) following moderate to severe traumatic brain injury (TBI).MethodsA retrospective analysis was conducted for all adult patients who sustained TBI and were hospitalized at the trauma center from January 2014 to February 2019 with an abbreviated injury severity score for head region (HAIS) ≥ 3. We used the demographic characteristics, injuries and CT findings as predictors. Logistic regression (LR) and Artificial neural networks (ANN) were used to predict the in-hospital mortality. Accuracy, area under the receiver operating characteristics curve (AUROC), precision, negative predictive value (NPV), sensitivity, specificity and F-score were used to compare the models` performance.ResultsAcross the study duration; 785 patients met the inclusion criteria (581 survived and 204 deceased). The two models (LR and ANN) achieved good performance with an accuracy over 80% and AUROC over 87%. However, when taking the other performance measures into account, LR achieved higher overall performance than the ANN with an accuracy and AUROC of 87% and 90.5%, respectively compared to 80.9% and 87.5%, respectively. Venous thromboembolism prophylaxis, severity of TBI as measured by abbreviated injury score, TBI diagnosis, the need for blood transfusion, heart rate upon admission to the emergency room and patient age were found to be the significant predictors of in-hospital mortality for TBI patients on MV.ConclusionsMachine learning based LR achieved good predictive performance for the prognosis in mechanically ventilated TBI patients. This study presents an opportunity to integrate machine learning methods in the trauma registry to provide instant clinical decision-making support.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…