• J Int Neuropsychol Soc · Aug 2020

    Machine Learning Analysis of Digital Clock Drawing Test Performance for Differential Classification of Mild Cognitive Impairment Subtypes Versus Alzheimer's Disease.

    • Russell Binaco, Nicholas Calzaretto, Jacob Epifano, Sean McGuire, Muhammad Umer, Sheina Emrani, Victor Wasserman, David J Libon, and Robi Polikar.
    • Signal Processing and Pattern Recognition Laboratory, Rowan University Glassboro, Glassboro, NJ, USA.
    • J Int Neuropsychol Soc. 2020 Aug 1; 26 (7): 690-700.

    ObjectiveTo determine how well machine learning algorithms can classify mild cognitive impairment (MCI) subtypes and Alzheimer's disease (AD) using features obtained from the digital Clock Drawing Test (dCDT).MethodsdCDT protocols were administered to 163 patients diagnosed with AD(n = 59), amnestic MCI (aMCI; n = 26), combined mixed/dysexecutive MCI (mixed/dys MCI; n = 43), and patients without MCI (non-MCI; n = 35) using standard clock drawing command and copy procedures, that is, draw the face of the clock, put in all of the numbers, and set the hands for "10 after 11." A digital pen and custom software recorded patient's drawings. Three hundred and fifty features were evaluated for maximum information/minimum redundancy. The best subset of features was used to train classification models to determine diagnostic accuracy.ResultsNeural network employing information theoretic feature selection approaches achieved the best 2-group classification results with 10-fold cross validation accuracies at or above 83%, that is, AD versus non-MCI = 91.42%; AD versus aMCI = 91.49%; AD versus mixed/dys MCI = 84.05%; aMCI versus mixed/dys MCI = 84.11%; aMCI versus non-MCI = 83.44%; and mixed/dys MCI versus non-MCI = 85.42%. A follow-up two-group non-MCI versus all MCI patients analysis yielded comparable results (83.69%). Two-group classification analyses were achieved with 25-125 dCDT features depending on group classification. Three- and four-group analyses yielded lower but still promising levels of classification accuracy.ConclusionEarly identification of emergent neurodegenerative illness is criterial for better disease management. Applying machine learning to standard neuropsychological tests promises to be an effective first line screening method for classification of non-MCI and MCI subtypes.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.