-
- Weihan Zheng, Guojian Lin, and Zhizhou Wang.
- School of Basic Medicine, Fujian Medical University, Fuzhou, Fujian, PR China.
- Medicine (Baltimore). 2021 Nov 24; 100 (47): e27777e27777.
AbstractKeloid is a benign fibroproliferative skin tumor. The respective functions of fibroblasts and vascular endothelial cells in keloid have not been fully studied. The purpose of this study is to identify the respective roles and key genes of fibroblasts and vascular endothelial cells in keloids, which can be used as new targets for diagnosis or treatment.The microarray datasets of keloid fibroblasts and vascular endothelial cells were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened out. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used for functional enrichment analysis. The search tool for retrieval of interacting genes and Cytoscape were used to construct protein-protein interaction (PPI) networks and analyze gene modules. The hub genes were screened out, and the relevant interaction networks and biological process analysis were carried out.In fibroblasts, the DEGs were significantly enriched in collagen fibril organization, extracellular matrix organization and ECM-receptor interaction. The PPI network was constructed, and the most significant module was selected, which is mainly enriched in ECM-receptor interaction. In vascular endothelial cells, the DEGs were significantly enriched in cytokine activity, growth factor activity and transforming growth factor-β (TGF-β) signaling pathway. Module analysis was mainly enriched in TGF-β signaling pathway. Hub genes were screened out separately.In summary, the DEGs and hub genes discovered in this study may help us understand the molecular mechanisms of keloid, and provide potential targets for diagnosis and treatment.Copyright © 2021 the Author(s). Published by Wolters Kluwer Health, Inc.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.