• Neural computation · Feb 2004

    Comparative Study

    Dynamic analyses of information encoding in neural ensembles.

    • Riccardo Barbieri, Loren M Frank, David P Nguyen, Michael C Quirk, Victor Solo, Matthew A Wilson, and Emery N Brown.
    • Neuroscience Statistics Research Laboratory, Department of Anesthesia and Critical Care, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA. barbieri@neurostat.mgh.harvard.edu
    • Neural Comput. 2004 Feb 1; 16 (2): 277-307.

    AbstractNeural spike train decoding algorithms and techniques to compute Shannon mutual information are important methods for analyzing how neural systems represent biological signals. Decoding algorithms are also one of several strategies being used to design controls for brain-machine interfaces. Developing optimal strategies to design decoding algorithms and compute mutual information are therefore important problems in computational neuroscience. We present a general recursive filter decoding algorithm based on a point process model of individual neuron spiking activity and a linear stochastic state-space model of the biological signal. We derive from the algorithm new instantaneous estimates of the entropy, entropy rate, and the mutual information between the signal and the ensemble spiking activity. We assess the accuracy of the algorithm by computing, along with the decoding error, the true coverage probability of the approximate 0.95 confidence regions for the individual signal estimates. We illustrate the new algorithm by reanalyzing the position and ensemble neural spiking activity of CA1 hippocampal neurons from two rats foraging in an open circular environment. We compare the performance of this algorithm with a linear filter constructed by the widely used reverse correlation method. The median decoding error for Animal 1 (2) during 10 minutes of open foraging was 5.9 (5.5) cm, the median entropy was 6.9 (7.0) bits, the median information was 9.4 (9.4) bits, and the true coverage probability for 0.95 confidence regions was 0.67 (0.75) using 34 (32) neurons. These findings improve significantly on our previous results and suggest an integrated approach to dynamically reading neural codes, measuring their properties, and quantifying the accuracy with which encoded information is extracted.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.