• Cochrane Db Syst Rev · Dec 2021

    Review Meta Analysis

    Propionyl-L-carnitine for intermittent claudication.

    • Victor Kamoen, Robert Vander Stichele, Laurence Campens, Dirk De Bacquer, Luc Van Bortel, and Tine Lm de Backer.
    • Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
    • Cochrane Db Syst Rev. 2021 Dec 26; 12 (12): CD010117CD010117.

    BackgroundPeripheral arterial disease (PAD) is a manifestation of systemic atherosclerosis. Intermittent claudication is a symptomatic form of PAD that is characterized by pain in the lower limbs caused by chronic occlusive arterial disease. This pain develops in a limb during exercise and is relieved with rest. Propionyl-L-carnitine (PLC) is a drug that may alleviate the symptoms of PAD through a metabolic pathway, thereby improving exercise performance.ObjectivesThe objective of this review is to determine whether propionyl-L-carnitine is efficacious compared with placebo, other drugs, or other interventions used for treatment of intermittent claudication (e.g. exercise, endovascular intervention, surgery) in increasing pain-free and maximum walking distance for people with stable intermittent claudication, Fontaine stage II.Search MethodsThe Cochrane Vascular Information Specialist searched the Cochrane Vascular Specialised Register, CENTRAL, MEDLINE, Embase, and CINAHL databases and the World Health Organization International Clinical Trials Registry Platform and the ClinicalTrials.gov trials register to July 7, 2021. We undertook reference checking and contact with study authors and pharmaceutical companies to identify additional unpublished and ongoing studies.Selection CriteriaDouble-blind randomized controlled trials (RCTs) in people with intermittent claudication (Fontaine stage II) receiving PLC compared with placebo or another intervention. Outcomes included pain-free walking performance (initial claudication distance - ICD) and maximal walking performance (absolute claudication distance - ACD), analyzed by standardized treadmill exercise test, as well as ankle brachial index (ABI), quality of life, progression of disease, and adverse events.Data Collection And AnalysisTwo review authors independently selected trials, extracted data, and evaluated trials for risk of bias. We contacted study authors for additional information. We resolved any disagreements by consensus. We performed fixed-effect model meta-analyses with mean differences (MDs) and 95% confidence intervals (CIs). We graded the certainty of evidence according to GRADE.Main ResultsWe included 12 studies in this review with a total number of 1423 randomized participants. A majority of the included studies assessed PLC versus placebo (11 studies, 1395 participants), and one study assessed PLC versus L-carnitine (1 study, 26 participants). We identified no RCTs that assessed PLC versus any other medication, exercise, endovascular intervention, or surgery. Participants received PLC 1 grams to 2 grams orally (9 studies) or intravenously (3 studies) per day or placebo. For the comparison PLC versus placebo, there was a high level of both clinical and statistical heterogeneity due to study size, participants coming from different countries and centres, the combination of participants with and without diabetes, and use of different treadmill protocols. We found a high proportion of drug company-backed studies. The overall certainty of the evidence was moderate. For PLC compared with placebo, improvement in maximal walking performance (ACD) was greater for PLC than for placebo, with a mean difference in absolute improvement of 50.86 meters (95% CI 50.34 to 51.38; 9 studies, 1121 participants), or a 26% relative improvement (95% CI 23% to 28%). Improvement in pain-free walking distance (ICD) was also greater for PLC than for placebo, with a mean difference in absolute improvement of 32.98 meters (95% CI 32.60 to 33.37; 9 studies, 1151 participants), or a 31% relative improvement (95% CI 28% to 34%). Improvement in ABI was greater for PLC than for placebo, with a mean difference in improvement of 0.09 (95% CI 0.08 to 0.09; 4 studies, 369 participants). Quality of life improvement was greater with PLC (MD 0.06, 95% CI 0.05 to 0.07; 1 study, 126 participants). Progression of disease and adverse events including nausea, gastric intolerance, and flu-like symptoms did not differ greatly between PLC and placebo. For the comparison of PLC with L-carnitine, the certainty of evidence was low because this included a single, very small, cross-over study. Mean improvement in ACD was slightly greater for PLC compared to L-carnitine, with a mean difference in absolute improvement of 20.00 meters (95% CI 0.47 to 39.53; 1 study, 14 participants) or a 16% relative improvement (95% CI 0.4% to 31.6%). We found no evidence of a clear difference in the ICD (absolute improvement 4.00 meters, 95% CI -9.86 to 17.86; 1 study, 14 participants); or a 3% relative improvement (95% CI -7.4% to 13.4%). None of the other outcomes of this review were reported in this study.Authors' ConclusionsWhen PLC was compared with placebo, improvement in walking distance was mild to moderate and safety profiles were similar, with moderate overall certainty of evidence. Although In clinical practice, PLC might be considered as an alternative or an adjuvant to standard treatment when such therapies are found to be contraindicated or ineffective, we found no RCT evidence comparing PLC with standard treatment to directly support such use.Copyright © 2021 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.