• BMJ open · Nov 2021

    Using hierarchical clustering analysis to evaluate COVID-19 pandemic preparedness and performance in 180 countries in 2020.

    • Banafsheh Sadeghi, Rex C Y Cheung, and Meagan Hanbury.
    • Health Bridge Analytics, Davis, California, USA.
    • BMJ Open. 2021 Nov 9; 11 (11): e049844.

    ObjectiveTo rank and score 180 countries according to COVID-19 cases and fatality in 2020 and compare the results to existing pandemic vulnerability prediction models and results generated by standard epidemiological scoring techniques.SettingOne hundred and eighty countries' patients with COVID-19 and fatality data representing the healthcare system preparedness and performance in combating the pandemic in 2020.DesignUsing the retrospective daily COVID-19 data in 2020 broken into 24 half-month periods, we applied unsupervised machine learning techniques, in particular, hierarchical clustering analysis to cluster countries into five groups within each period according to their cumulative COVID-19 fatality per day over the year and cumulative COVID-19 cases per million population per day over the half-month period. We used the average of the period scores to assign countries' final scores for each measure.Primary OutcomeThe primary outcomes are the COVID-19 cases and fatality grades in 2020.ResultsThe United Arab Emirates and the USA with F in COVID-19 cases, achieved A or B in the fatality scores. Belgium and Sweden ranked F in both scores. Although no African country ranked F for COVID-19 cases, several African countries such as Gambia and Liberia had F for fatality scores. More developing countries ranked D and F in fatality than in COVID-19 case rankings. The classic epidemiological measures such as averages and rates have a relatively good correlation with our methodology, but past predictions failed to forecast the COVID-19 countries' preparedness.ConclusionCOVID-19 fatality can be a good proxy for countries' resources and system's resilience in managing the pandemic. These findings suggest that countries' economic and sociopolitical factors may behave in a more complex way as were believed. To explore these complex epidemiological associations, models can benefit enormously by taking advantage of methods developed in computer science and machine learning.© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.