-
- Jae-Young Hong, Kyungdo Han, Jin-Hyung Jung, and Jung Sun Kim.
- Division of Spinal Surgery, Department of Orthopedics, College of Medicine, Korea University, Seoul, South Korea.
- JAMA Netw Open. 2019 Sep 4; 2 (9): e1910584.
ImportanceDiagnostic low-dose ionizing radiation has great medical benefits; however, its increasing use has raised concerns about possible cancer risks.ObjectiveTo examine the risk of cancer after diagnostic low-dose radiation exposure.Design, Setting, And ParticipantsThis population-based cohort study included youths aged 0 to 19 years at baseline from South Korean National Health Insurance System claim records from January 1, 2006, to December 31, 2015. Exposure to diagnostic low-dose ionizing radiation was classified as any that occurred on or after the entry date, when the participant was aged 0 to 19 years, on or before the exit date, and at least 2 years before any cancer diagnosis. Cancer diagnoses were based on International Statistical Classification of Diseases and Related Health Problems, Tenth Revision codes. Data were analyzed from March 2018 to September 2018.Main Outcomes And MeasuresThe primary analysis assessed the incidence rate ratios (IRRs) for exposed vs nonexposed individuals using the number of person-years as an offset.ResultsThe cohort included a total of 12 068 821 individuals (6 339 782 [52.5%] boys). There were 2 309 841 individuals (19.1%) aged 0 to 4 years, 2 951 679 individuals (24.5%) aged 5 to 9 years, 3 489 709 individuals (28.9%) aged 10 to 14 years, and 3 317 593 individuals (27.5%) aged 15 to 19 years. Of these, 1 275 829 individuals (10.6%) were exposed to diagnostic low-dose ionizing radiation between 2006 and 2015, and 10 792 992 individuals (89.4%) were not exposed. By December 31, 2015, 21 912 cancers were recorded. Among individuals who had been exposed, 1444 individuals (0.1%) received a cancer diagnosis. The overall cancer incidence was greater among exposed individuals than among nonexposed individuals after adjusting for age and sex (IRR, 1.64 [95% CI, 1.56-1.73]; P < .001). Among individuals who had undergone computed tomography scans in particular, the overall cancer incidence was greater among exposed individuals than among nonexposed individuals after adjusting for age and sex (IRR, 1.54 [95% CI, 1.45-1.63]; P < .001). The incidence of cancer increased significantly for many types of lymphoid, hematopoietic, and solid cancers after exposure to diagnostic low-dose ionizing radiation. Among lymphoid and hematopoietic cancers, incidence of cancer increased the most for other myeloid leukemias (IRR, 2.14 [95% CI, 1.86-2.46]) and myelodysplasia (IRR, 2.48 [95% CI, 1.77-3.47]). Among solid cancers, incidence of cancer increased the most for breast (IRR, 2.32 [95% CI, 1.35-3.99]) and thyroid (IRR, 2.19 [95% CI, 1.97-2.20]) cancers.Conclusions And RelevanceThis study found an association of increased incidence of cancer with exposure to diagnostic low-dose ionizing radiation in a large cohort. Given this risk, diagnostic low-dose ionizing radiation should be limited to situations in which there is a definite clinical indication.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.