• Critical care medicine · Mar 2000

    Comparative Study

    Comparison of intratracheal pulmonary ventilation and hybrid intratracheal pulmonary ventilation with conventional mechanical ventilation in a rabbit model of acute respiratory distress syndrome by saline lavage.

    • C A Perez, K C Bui, J Bustorff-Silva, and J B Atkinson.
    • Division of Pediatric Surgery, UCLA School of Medicine, Los Angeles, CA, USA.
    • Crit. Care Med. 2000 Mar 1;28(3):774-81.

    ObjectivesTo study changes in PaCO2 and PaO2 during intratracheal pulmonary ventilation (ITPV) and hybrid intratracheal pulmonary ventilation (h-ITPV) compared with conventional mechanical ventilation (CMV) in a rabbit model of respiratory failure, and to define the technique of h-ITPV that combines conventional mechanical ventilation and ITPV.DesignProspective, interventional study.SubjectsTwelve adult New Zealand White rabbits.InterventionsSurfactant deficiency was induced by saline lavage, and rabbits were randomized to either ITPV or h-ITPV. The study consisted of four phases: phase 0, CMV after saline lavage, ventilator rate 30 breaths/min; phase I, ITPV or h-ITPV initiated at the same pressure and rate as in phase 0; phase II, ITPV or 1.0 L/min h-ITPV bias flow, with peak inspiratory pressure (PIP) decreased and ventilator rate increased to achieve the lowest tidal volume while maintaining adequate gas exchange; and phase III, animals returned to CMV.Measurements And Main ResultsIn phase I, no difference in PaCO2 was observed between ITPV, h-ITPV, or CMV. There was a decrease in PaO2 when switching from CMV to ITPV but not to h-ITPV. In phase II, it was possible to decrease PIP (average of 37% for ITPV and 36% for h-ITPV) and tidal volume (average of 64% for ITPV and 53% for h-ITPV) without compromising gas exchange (p < .05). Oxygenation tended to improve from phase 0 to the end of phase II. In phase III, PaCO2 increased (average of 71% for ITPV and 79% for h-ITPV) and pH decreased (p < .05). Normocapnia was achieved using significantly higher PIP and tidal volume, compared with phase 0 (p < .05).ConclusionsITPV and h-ITPV can effectively ventilate and oxygenate rabbits with surfactant-deficient lungs at tidal volumes and therefore pressures lower than required with CMV. Maximum benefit appears to occur at high ventilator rates. These findings suggest that both modes of ventilation may represent powerful new tools in the management of patients with acute respiratory failure. (Crit Care Med 2000; 28:774-781)

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,704,841 articles already indexed!

We guarantee your privacy. Your email address will not be shared.