-
- Simon Orlob, Wolfgang J Kern, Birgitt Alpers, Michael Schörghuber, Andreas Bohn, Martin Holler, Jan-Thorsten Gräsner, and Jan Wnent.
- University Hospital Schleswig-Holstein, Institute for Emergency Medicine, Kiel, Germany; Medical University of Graz, Department of Anesthesiology and Intensive Care Medicine, Division of Anesthesiology for Cardiovascular and Thoracic Surgery and Intensive Care Medicine, Graz, Austria. Electronic address: simon.orlob@medunigraz.at.
- Resuscitation. 2022 Mar 1; 172: 162-169.
AimTo introduce and evaluate a new, open-source algorithm to detect chest compression periods automatically by the rhythmic, high amplitude signals from an accelerometer, without processing single chest compression events, and to consecutively calculate the chest compression fraction (CCF).MethodsA consecutive sample of defibrillator records from the German Resuscitation Registry was obtained and manually annotated in consensus as ground truth. Chest compression periods were determined by different automatic approaches, including the new algorithm. The diagnostic performance of these approaches was assessed. Further, using the different approaches in conjunction with different granularities of manual annotation, several CCF versions were calculated and compared by intraclass correlation coefficient (ICC).Results131 defibrillator recordings with a total duration of 5755 minutes were analysed. The new algorithm had a sensitivity of 99.39 (95% CI 99.38, 99.41)% and specificity of 99.17 (95% CI 99.15; 99.18)% to detect chest compressions at any given timepoint. The ICC compared to ground truth was 0.998 for the new algorithm and 0.999 for manual annotation, while the ICC of the proposed algorithm compared to the proprietary software was 0.978. The time required for manual annotation to calculate CCF was reduced by 70.48 (22.55, [94.35, 14.45])%.ConclusionThe proposed algorithm reliably detects chest compressions in defibrillator recordings. It can markedly reduce the workload for manual annotation, which may facilitate uniform reporting of measured quality of cardiopulmonary resuscitation. The algorithm is made freely available and may be used in big data analysis and machine learning approaches.Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.