-
Brain Imaging Behav · Aug 2019
Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis from resting-state FMRI connectivity data.
- Valeria Saccà, Alessia Sarica, Fabiana Novellino, Stefania Barone, Tiziana Tallarico, Enrica Filippelli, Alfredo Granata, Carmelina Chiriaco, Roberto Bruno Bossio, Paola Valentino, and Aldo Quattrone.
- Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro, Italy.
- Brain Imaging Behav. 2019 Aug 1; 13 (4): 1103-1114.
AbstractMachine Learning application on clinical data in order to support diagnosis and prognostic evaluation arouses growing interest in scientific community. However, choice of right algorithm to use was fundamental to perform reliable and robust classification. Our study aimed to explore if different kinds of Machine Learning technique could be effective to support early diagnosis of Multiple Sclerosis and which of them presented best performance in distinguishing Multiple Sclerosis patients from control subjects. We selected following algorithms: Random Forest, Support Vector Machine, Naïve-Bayes, K-nearest-neighbor and Artificial Neural Network. We applied the Independent Component Analysis to resting-state functional-MRI sequence to identify brain networks. We found 15 networks, from which we extracted the mean signals used into classification. We performed feature selection tasks in all algorithms to obtain the most important variables. We showed that best discriminant network between controls and early Multiple Sclerosis, was the sensori-motor I, according to early manifestation of motor/sensorial deficits in Multiple Sclerosis. Moreover, in classification performance, Random Forest and Support Vector Machine showed same 5-fold cross-validation accuracies (85.7%) using only this network, resulting to be best approaches. We believe that these findings could represent encouraging step toward the translation to clinical diagnosis and prognosis.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.