• Epilepsia · May 2003

    Respiratory pattern in a rat model of epilepsy.

    • Ruy R Campos, Fatima R P Tolentino-Silva, and Luiz E A M Mello.
    • Department of Physiology, UNIFESP, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rue Botucatu 862, CEP 04023-060 São Paulo, SP, Brazil. campos@fcr.epm.br
    • Epilepsia. 2003 May 1; 44 (5): 712-7.

    PurposeApnea is known to occur during seizures, but systematic studies of ictal respiratory changes in adults are few. Data regarding respiratory pattern defects during interictal periods also are scarce. Here we sought to generate information with regard to the interictal period in animals with pilocarpine-induced epilepsy.MethodsTwelve rats (six chronically epileptic animals and six controls) were anesthetized, given tracheotomies, and subjected to hyperventilation or hypoventilation conditions. Breathing movements caused changes in thoracic volume and forced air to flow tidally through a pneumotachograph. This flow was measured by using a differential pressure transducer, passed through a polygraph, and from this to a computer with custom software that derived ventilation (VE), tidal volume (VT), inspiratory time (TI), expiratory time (TE), breathing frequency (f), and mean inspiratory flow (VT/TI) on a breath-by-breath basis.ResultsThe hyperventilation maneuver caused a decrease in spontaneous ventilation in pilocarpine-treated and control rats. Although VE had a similar decrease in both groups, in the epileptic group, the decrease in VE was due to a significant (p < 0.05) increase in TE peak in relation to that of the control animals. The hypoventilation maneuver led to an increase in the arterial Paco2, followed by an increase in VE. In the epileptic group, the increase in VE was mediated by a significant (p < 0.05) decrease in TE peak compared with the control group. Systemic application of KCN, to evaluate the effects of peripheral chemoreception activation on ventilation, led to a similar increase in VE for both groups.ConclusionsThe data indicate that pilocarpine-treated animals have an altered ability to react to (or compensate for) blood gas changes with changes in ventilation and suggest that it is centrally determined. We speculate on the possible relation of the current findings on treating different epilepsy-associated conditions.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.