• J Clin Monit Comput · Oct 2022

    Learning from EMG: semi-automated grading of facial nerve function.

    • Magdalena Holze, Leonhard Rensch, Julian Prell, Christian Scheller, Sebastian Simmermacher, Maximilian Scheer, Christian Strauss, and Stefan Rampp.
    • Department of Neurosurgery, University Hospital Halle (Saale), Halle, Germany. magdalena.holze@med.uni-heidelberg.de.
    • J Clin Monit Comput. 2022 Oct 1; 36 (5): 1509-1517.

    AbstractThe current grading of facial nerve function is based on subjective impression with the established assessment scale of House and Brackmann (HB). Especially for research a more objective method is needed to lower the interobserver variability to a minimum. We developed a semi-automated grading system based on (facial) surface EMG-data measuring the facial nerve function of 28 patients with vestibular schwannoma surgery. The sEMG was recorded preoperatively, postoperatively and after 3-12 months. In addition, the HB grade was determined. After manual selection and preprocessing, the data were subjected to machine learning classificators (Logistic regression, SVM and KNN). Lateralization indices were calculated and multivariant machine learning analysis was performed according to three scenarios [differentiation of normal (1) and slight (2) vs. impaired facial nerve function and classification of HB 1-3 (3)]. The calculated AUC for each scenario showed overall good differentiation capability with a median AUC of 0.72 for scenario 1, 0.91 for scenario 2 and multiclass AUC of 0.74 for scenario 3. This study approach using sEMG and machine learning shows feasibility regarding facial nerve grading in perioperative VS-surgery setting. sEMG may be a viable alternative to House Brackmann regarding objective evaluation of facial function especially for research purposes.© 2022. The Author(s).

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…