-
- Trevor Elam, Sorana Raiculescu, Shyam Biswal, Zhenyu Zhang, Michael Orestes, and Murugappan Ramanathan.
- Naval Medical Center Portsmouth, Portsmouth, VA 23708, USA.
- Mil Med. 2022 Jan 7.
IntroductionIt has been shown that combat environment exposure, including burn pits that produce particulate matter 2.5 (PM2.5), is associated with lower respiratory tract disease in the military population with increased hypothetical risk of upper respiratory disease, but no study has been done that examines the effects of non-combat environmental exposures on the development of chronic rhinosinusitis (CRS) in the active duty population. The primary goal of this study is to evaluate how air pollution exposure correlates to the development of CRS in active duty service members in the United States.MethodsThe military electronic medical record was queried for active duty service members diagnosed with CRS by an otolaryngologist between January 2016 and January 2018, who have never deployed, stationed in the United States from 2015 to 2018 (n = 399). For each subject, the 1-year mean exposure of PM2.5, particulate matter 10 (PM10), nitrogen dioxide (NO2), and ozone was calculated. The control group was comprised of the same criteria except these patients were diagnosed with cerumen impaction and matched to the case group by age and gender (n = 399). Pollution exposure was calculated based on the Environmental Protection Agency's data tables for each subject. Values were calculated using chi-square test for categorical variables and the Mann-Whitney U-test for continuous variables.ResultsMatched cases and controls (n = 399) with 33.1% male showed a statistically significant odds ratio (OR) of 5.99 (95% CI, 2.55-14.03) for exposure of every 5 µg/m3 of PM2.5 increase and the development of CRS when controlling for age, gender, and diagnosis year. When further adjusting for smoking status, the OR was still statistically significant at 3.15 (95% CI, 1.03-9.68). Particulate matter 10, ozone, and NO2 did not show any statistical significance. Odds ratios remained statistically significant when further adjusting for PM10 and ozone, but not NO2. Dose-dependent curves largely did not show a statistical significance; however, they did trend towards increased exposure of PM2.5 leading to an elevated OR.ConclusionThis study showed that PM2.5 exposure is a major independent contributor to the development of CRS. Exposure to elevated levels produced statistically significant odds even among smokers and remained significant when controlling for other measured pollutants. There is still much to be understood about the genesis of CRS. From a pollution exposure perspective, a prospective cohort study would better elucidate the risk of the development of CRS among those exposed to other pollutants.Published by Oxford University Press on behalf of the Association of Military Surgeons of the United States 2022. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.