• World Neurosurg · Apr 2022

    Review

    The Uncharted Waters of Machine and Deep Learning for Surgical Phase Recognition in Neurosurgery.

    • Fareed Jumah, Bharath Raju, Anmol Nagaraj, Rohit Shinde, Cara Lescott, Hai Sun, Gaurav Gupta, and Anil Nanda.
    • Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA.
    • World Neurosurg. 2022 Apr 1; 160: 4-12.

    AbstractRecent years have witnessed artificial intelligence (AI) make meteoric leaps in both medicine and surgery, bridging the gap between the capabilities of humans and machines. Digitization of operating rooms and the creation of massive quantities of data have paved the way for machine learning and computer vision applications in surgery. Surgical phase recognition (SPR) is a newly emerging technology that uses data derived from operative videos to train machine and deep learning algorithms to identify the phases of surgery. Advancement of this technology will be key in establishing context-aware surgical systems in the future. By automatically recognizing and evaluating the current surgical scenario, these intelligent systems are able to provide intraoperative decision support, improve operating room efficiency, assess surgical skills, and aid in surgical training and education. Still in its infancy, SPR has been mainly studied in laparoscopic surgeries, with a contrasting stark lack of research within neurosurgery. Given the high-tech and rapidly advancing nature of neurosurgery, we believe SPR has a tremendous untapped potential in this field. Herein, we present an overview of the SPR technology, its potential applications in neurosurgery, and the challenges that lie ahead.Copyright © 2022 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…