-
- Henrik Heitmann, Cristina Gil Ávila, Moritz M Nickel, Ta DinhSonS0000-0002-7214-9555Technical University of Munich (TUM), School of Medicine, Department of Neurology, Munich, Germany.TUM, School of Medicine, TUM-Neuroimaging Center, Munich, Germany., Elisabeth S May, Laura Tiemann, Vanessa D Hohn, Thomas R Tölle, and Markus Ploner.
- Technical University of Munich (TUM), School of Medicine, Department of Neurology, Munich, Germany.
- Pain. 2022 Sep 1; 163 (9): e997e1005e997-e1005.
AbstractChronic pain is a major healthcare issue posing a large burden on individuals and society. Converging lines of evidence indicate that chronic pain is associated with substantial changes of brain structure and function. However, it remains unclear which neuronal measures relate to changes of clinical parameters over time and could thus monitor chronic pain and treatment responses. We therefore performed a longitudinal study in which we assessed clinical characteristics and resting-state electroencephalography data of 41 patients with chronic pain before and 6 months after interdisciplinary multimodal pain therapy. We specifically assessed electroencephalography measures that have previously been shown to differ between patients with chronic pain and healthy people. These included the dominant peak frequency; the amplitudes of neuronal oscillations at theta, alpha, beta, and gamma frequencies; as well as graph theory-based measures of brain network organization. The results show that pain intensity, pain-related disability, and depression were significantly improved after interdisciplinary multimodal pain therapy. Bayesian hypothesis testing indicated that these clinical changes were not related to changes of the dominant peak frequency or amplitudes of oscillations at any frequency band. Clinical changes were, however, associated with an increase in global network efficiency at theta frequencies. Thus, changes in chronic pain might be reflected by global network changes in the theta band. These longitudinal insights further the understanding of the brain mechanisms of chronic pain. Beyond, they might help to identify biomarkers for the monitoring of chronic pain.Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the International Association for the Study of Pain.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.