• Medicina · Dec 2021

    The Pulp Stones: Morphological Analysis in Scanning Electron Microscopy and Spectroscopic Chemical Quantification.

    • Aleksandra Palatyńska-Ulatowska, Marcos Cook Fernandes, Krystyna Pietrzycka, Agata Koprowicz, Leszek Klimek, Ronaldo Araújo Souza, Marieli Pradebon, and José Antonio Poli de Figueiredo.
    • Department of Endodontics, Conservative Dentistry and Endodontics, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland.
    • Medicina (Kaunas). 2021 Dec 21; 58 (1).

    AbstractBackground and objectives: Pulp stones are hard tissue structures formed in the pulp of permanent and deciduous teeth. Few studies have evaluated their morphology and chemical composition. However, their formation, composition, configuration and role played in overall health status are still unclear. Clinically, they may be symptomatic; technically, they impede access during endodontic therapy, increasing the risk of treatment errors. Thus, this study aimed to morphologically analyze pulp stones and present their chemical quantification, identifying their main chemical elements. It also correlates the results with their possible induction mechanisms. Materials and Methods: Seven pulp nodules were collected from molar teeth needing endodontic treatment. The morphology of the stones was analyzed by scanning electron microscopy (SEM), and their chemical composition was determined by X-ray dispersive energy spectroscopy (EDX). Results: These structures varied considerably in shape, size and topography. The site of the stones in the pulp cavity was the factor that most affected the morphology. The majority of the stones found in the pulp chambers presented nodular morphology, while those in the root canals presented a diffuse shape, resembling root canal anatomy. The topography of the nodules showed heterogeneous relief, revealing smooth and compact areas contrasting with the rugged and porous ones. The chemical composition varied depending on the location of the nodule in the pulp cavity and the relief of the analyzed area. Radicular stones presented considerably lower calcium and phosphorus content than coronary nodules. Conclusions: The high cellularity rate of the coronal pulp predisposes this region to nodular mineralizations around injured cells. The presence of larger caliber vascular bundles and higher collagen fiber content in radicular pulp determines a diffuse morphological pattern in this region. Understanding the morphology and chemical composition of the pulp stones allows future translational pathways towards the prevention or treatment of such conditions.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…