• Shock · May 2022

    Temperature Trajectory Sub-Phenotypes and The Immuno-Inflammatory Response In Pediatric Sepsis.

    • Nadir Yehya, Julie C Fitzgerald, Katie Hayes, Donglan Zhang, Jenny Bush, Natalka Koterba, Fang Chen, Florin Tuluc, David T Teachey, Fran Balamuth, Simon F Lacey, Jan Joseph Melenhorst, and Scott L Weiss.
    • Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
    • Shock. 2022 May 1; 57 (5): 645651645-651.

    ObjectiveHeterogeneity has hampered sepsis trials, and sub-phenotyping may assist with enrichment strategies. However, biomarker-based strategies are difficult to operationalize. Four sub-phenotypes defined by distinct temperature trajectories in the first 72 h have been reported in adult sepsis. Given the distinct epidemiology of pediatric sepsis, the existence and relevance of temperature trajectory-defined sub-phenotypes in children is unknown. We aimed to classify septic children into de novo sub-phenotypes derived from temperature trajectories in the first 72 h, and compare cytokine, immune function, and immunometabolic markers across subgroups.MethodsThis was a secondary analysis of a prospective cohort of 191 critically ill septic children recruited from a single academic pediatric intensive care unit. We performed group-based trajectory modeling using temperatures over the first 72 h of sepsis to identify latent profiles. We then used mixed effects regression to determine if temperature trajectory-defined sub-phenotypes were associated with cytokine levels, immune function, and mitochondrial respiration.ResultsWe identified four temperature trajectory-defined sub-phenotypes: hypothermic, normothermic, hyperthermic fast-resolvers, and hyperthermic slow-resolvers. Hypothermic patients were less often previously healthy and exhibited lower levels of pro- and anti-inflammatory cytokines and chemokines. Hospital mortality did not differ between hypothermic children (17%) and other sub-phenotypes (3-11%; P = 0.26).ConclusionsCritically ill septic children can be categorized into temperature trajectory-defined sub-phenotypes that parallel adult sepsis. Hypothermic children exhibit a blunted cytokine and chemokine profile. Group-based trajectory modeling has utility for identifying subtypes of clinical syndromes by incorporating readily available longitudinal data, rather than relying on inputs from a single timepoint.Copyright © 2022 by the Shock Society.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.