• Neuromodulation · Dec 2023

    The Fast Gray Matter Acquisition T1 Inversion Recovery Sequence in Deep Brain Stimulation: Introducing the Rubral Wing for Dentato-Rubro-Thalamic Tract Depiction and Tremor Control.

    • Maarten Bot, Rik Pauwels, Pepijn van den Munckhof, Maartje de Win, OdekerkenVincent J JVJJDepartment of Neurology and Clinical Neurophysiology, Amsterdam University Medical Center, Amsterdam, The Netherlands., Martijn Beudel, Joke Dijk, de BieRob M ARMADepartment of Neurology and Clinical Neurophysiology, Amsterdam University Medical Center, Amsterdam, The Netherlands., and P Richard Schuurman.
    • Department of Neurosurgery, Amsterdam University Medical Center, Amsterdam, The Netherlands. Electronic address: m.bot@amsterdamumc.nl.
    • Neuromodulation. 2023 Dec 1; 26 (8): 170517131705-1713.

    BackgroundThe dentato-rubro-thalamic tract (DRT) is currently considered as a potential target in deep brain stimulation (DBS) for various types of tremor. However, tractography depiction can vary depending on the included brain regions. The fast gray matter acquisition T1 inversion recovery (FGATIR) sequence, with excellent delineation of gray and white matter, possibly provides anatomical identification of rubro-thalamic DRT fibers.ObjectiveThis study aimed to evaluate the FGATIR sequence by comparison with DRT depiction, electrode localization, and effectiveness of DBS therapy.Materials And MethodsIn patients with DBS therapy because of medication-refractory tremor, the FGATIR sequence was evaluated for depiction of the thalamus, red nucleus (RN), and rubro-thalamic connections. Deterministic tractography of the DRT, electrode localization, and tremor control were compared. The essential tremor rating scale was used to assess (hand) tremor. Tremor control was considered successful when complete tremor suppression (grade 0) or almost complete suppression (grade 1) was observed.ResultsIn the postoperative phase, we evaluated 14 patients who underwent DRT-guided DBS: 12 patients with essential tremor, one with tremor-dominant Parkinson disease, and one with multiple sclerosis, representing 24 trajectories. Mean follow-up was 11.3 months (range 6-19 months). The FGATIR sequence provided a clear delineation of a hypointense white matter tract within the hyperintense thalamus. In coronal plane, this tract was most readily recognizable as a "rubral wing," with the round RN as base and lateral triangular convergence. The deterministic DRT depiction was consistently situated within the rubral wing. The number of active contacts located within the DRT (and rubral wing) was 22 (92%), of which 16 (73%) showed successful tremor control.ConclusionsThe FGATIR sequence offers visualization of the rubro-thalamic connections that form the DRT, most readily recognizable as a "rubral wing" in coronal plane. This sequence contributes to tractographic depiction of DRT and provides a direct anatomical DBS target area for tremor control.Copyright © 2021 International Neuromodulation Society. Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…