• Cochrane Db Syst Rev · Jan 2022

    Review

    Combined intermittent pneumatic leg compression and pharmacological prophylaxis for prevention of venous thromboembolism.

    • Stavros Kakkos, George Kirkilesis, Joseph A Caprini, George Geroulakos, Andrew Nicolaides, Gerard Stansby, and Daniel J Reddy.
    • Department of Vascular Surgery, University of Patras Medical School, Patras, Greece.
    • Cochrane Db Syst Rev. 2022 Jan 28; 1 (1): CD005258CD005258.

    BackgroundIt is generally assumed by practitioners and guideline authors that combined modalities (methods of treatment) are more effective than single modalities in preventing venous thromboembolism (VTE), defined as deep vein thrombosis (DVT) or pulmonary embolism (PE), or both. This is the second update of the review first published in 2008.ObjectivesThe aim of this review was to assess the efficacy of combined intermittent pneumatic leg compression (IPC) and pharmacological prophylaxis compared to single modalities in preventing VTE.Search MethodsThe Cochrane Vascular Information Specialist searched the Cochrane Vascular Specialised Register, CENTRAL, MEDLINE, Embase, CINAHL, and AMED databases, and World Health Organization International Clinical Trials Registry Platform and ClinicalTrials.gov trials registers to 18 January 2021. We searched the reference lists of relevant articles for additional studies.  SELECTION CRITERIA: We included randomised controlled trials (RCTs) or controlled clinical trials (CCTs) of combined IPC and pharmacological interventions used to prevent VTE compared to either intervention individually.Data Collection And AnalysisWe independently selected studies, applied Cochrane's risk of bias tool, and extracted data. We resolved disagreements by discussion. We performed fixed-effect model meta-analyses with odds ratios (ORs) and 95% confidence intervals (CIs). We used a random-effects model when there was heterogeneity. We assessed the certainty of the evidence using GRADE. The outcomes of interest were PE, DVT, bleeding and major bleeding.Main ResultsWe included a total of 34 studies involving 14,931 participants, mainly undergoing surgery or admitted with trauma. Twenty-five studies were RCTs (12,672 participants) and nine were CCTs (2259 participants). Overall, the risk of bias was mostly unclear or high. We used GRADE to assess the certainty of the evidence and this was downgraded due to the risk of bias, imprecision or indirectness. The addition of pharmacological prophylaxis to IPC compared with IPC alone reduced the incidence of symptomatic PE from 1.34% (34/2530) in the IPC group to 0.65% (19/2932) in the combined group (OR 0.51, 95% CI 0.29 to 0.91; 19 studies, 5462 participants, low-certainty evidence). The incidence of DVT was 3.81% in the IPC group and 2.03% in the combined group showing a reduced incidence of DVT in favour of the combined group (OR 0.51, 95% CI 0.36 to 0.72; 18 studies, 5394 participants, low-certainty evidence). The addition of pharmacological prophylaxis to IPC, however, increased the risk of any bleeding compared to IPC alone: 0.95% (22/2304) in the IPC group and 5.88% (137/2330) in the combined group (OR 6.02, 95% CI 3.88 to 9.35; 13 studies, 4634 participants, very low-certainty evidence). Major bleeding followed a similar pattern: 0.34% (7/2054) in the IPC group compared to 2.21% (46/2079) in the combined group (OR 5.77, 95% CI 2.81 to 11.83; 12 studies, 4133 participants, very low-certainty evidence). Tests for subgroup differences between orthopaedic and non-orthopaedic surgery participants were not possible for PE incidence as no PE events were reported in the orthopaedic subgroup. No difference was detected between orthopaedic and non-orthopaedic surgery participants for DVT incidence (test for subgroup difference P = 0.19).  The use of combined IPC and pharmacological prophylaxis modalities compared with pharmacological prophylaxis alone reduced the incidence of PE from 1.84% (61/3318) in the pharmacological prophylaxis group to 0.91% (31/3419) in the combined group (OR 0.46, 95% CI 0.30 to 0.71; 15 studies, 6737 participants, low-certainty evidence). The incidence of DVT was 9.28% (288/3105) in the pharmacological prophylaxis group and 5.48% (167/3046) in the combined group (OR 0.38, 95% CI 0.21 to 0.70; 17 studies; 6151 participants, high-certainty evidence). Increased bleeding side effects were not observed for IPC when it was added to anticoagulation (any bleeding: OR 0.87, 95% CI 0.56 to 1.35, 6 studies, 1314 participants, very low-certainty evidence; major bleeding: OR 1.21, 95% CI 0.35 to 4.18, 5 studies, 908 participants, very low-certainty evidence). No difference was detected between the orthopaedic and non-orthopaedic surgery participants for PE incidence (test for subgroup difference P = 0.82) or for DVT incidence (test for subgroup difference P = 0.69).Authors' ConclusionsEvidence suggests that combining IPC with pharmacological prophylaxis, compared to IPC alone reduces the incidence of both PE and DVT (low-certainty evidence). Combining IPC with pharmacological prophylaxis, compared to pharmacological prophylaxis alone, reduces the incidence of both PE (low-certainty evidence) and DVT (high-certainty evidence). We downgraded due to risk of bias in study methodology and imprecision. Very low-certainty evidence suggests that the addition of pharmacological prophylaxis to IPC increased the risk of bleeding compared to IPC alone, a side effect not observed when IPC is added to pharmacological prophylaxis (very low-certainty evidence), as expected for a physical method of thromboprophylaxis. The certainty of the evidence for bleeding was downgraded to very low due to risk of bias in study methodology, imprecision and indirectness. The results of this update agree with current guideline recommendations, which support the use of combined modalities in hospitalised people (limited to those with trauma or undergoing surgery) at risk of developing VTE. More studies on the role of combined modalities in VTE prevention are needed to provide evidence for specific patient groups and to increase our certainty in the evidence.Copyright © 2022 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.