• J Clin Monit Comput · Dec 2022

    Memsorb™, a novel CO2 removal device part I: in vitro performance with the Zeus IE®.

    • Mohammed K Bashraheel, Sarah A Eerlings, Andre M De Wolf, Arne Neyrinck, Marc Van de Velde, Geert Vandenbroucke, Rik Carette, Jeffrey Feldman, and HendrickxJan F AJFA0000-0002-1360-9662Department of Anesthesiology, Intensive Care and Pain Therapy, OLV Hospital, Aalst, Belgium. jcnwahendrickx@yahoo.com.Department of Anesthesiology, UZLeuven, Leuven, Belgium. jcnwahendrickx@yahoo.com.Department of Car.
    • Department of Anesthesiology, Intensive Care and Pain Therapy, OLV Hospital, Aalst, Belgium.
    • J Clin Monit Comput. 2022 Dec 1; 36 (6): 159116001591-1600.

    AbstractSoda lime-based CO2 absorbents are safe, but not ideal for reasons of ecology, economy, and dust formation. The Memsorb™ is a novel CO2 removal device that uses cardiopulmonary bypass oxygenator technology instead: a sweep gas passes through semipermeable hollow fibers, adding or removing gas from the circle breathing system. We studied the in vitro performance of a prototype Memsorb™ used with a Zeus IE® anesthesia machine when administering sevoflurane and desflurane in O2/air mixtures. The Zeus IE® equipped with Memsorb™ ventilated a 2L breathing bag with a CO2 inflow port in its tip. CO2 kinetics were studied by using different combinations of CO2 inflow (VCO2), Memsorb™ sweep gas flow, and Zeus IE® fresh gas flow (FGF) and ventilator settings. More specifically, it was determined under what circumstances the inspired CO2 concentration (FICO2) could be kept < 0.5%. O2 kinetics were studied by measuring the inspired O2 concentration (FIO2) resulting from different combinations of Memsorb™ sweep gas flow and O2 concentrations, and Zeus IE® FGFs and O2 concentrations. Memsorb™'s sevoflurane and desflurane waste was determined by measuring their injection rates during target-controlled closed-circuit anesthesia (TCCCA), and were compared to historical controls when using a soda lime absorbent (Draegersorb 800+) under identical conditions. With 160 mL/min VCO2 and 5 L/min minute ventilation (MV), lowering the sweep gas flow at any fixed Zeus IE® FGF increased FICO2 in a non-linear manner. Sweep gas flow adjustments kept FICO2 < 0.5% over the entire Zeus IE® FGF range tested with VCO2 up to 280 mL/min; tidal volume and respiratory rate affected the required sweep gas flow. At 10 L/min MV and low FGF (< 1.5 L/min), even a maximum sweep flow of 43 L/min was unable to keep FICO2 ≤ 0.5%. When the O2 concentration in the Zeus IE® FGF and the Memsorb™ sweep gas flow differed, FIO2 drifted towards the sweep gas O2 concentration, and more so as FGF was lowered; this effect was absent once FGF > minute ventilation. During sevoflurane and desflurane TCCCA, the Zeus IE® FGF remained zero while agent usage per % end-expired agent increased with increasing end-expired target agent concentrations and with a higher target FIO2. Agent waste during target-controlled delivery was higher with Memsorb™ than with the soda lime product, with the difference remaining almost constant over the FGF range studied. With a 5 L/min MV, Memsorb™ successfully removes CO2 with inflow rates up to 240 mL/min if an FICO2 of 0.5% is accepted, but at 10 L/min MV and low FGF (< 1.5 L/min), even a maximum sweep flow of 43 L/min was unable to keep FICO2 ≤ 0.5%. To avoid FIO2 deviating substantially from the O2 concentration in the fresh gas, the O2 concentration in the fresh gas and sweep gas should match. Compared to the use of Ca(OH)2 based CO2 absorbent, inhaled agent waste is increased. The device is most likely to find its use integrated in closed loop systems.© 2022. The Author(s), under exclusive licence to Springer Nature B.V.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.