• Am J Emerg Med · Mar 2022

    Predicting falls within 3 months of emergency department discharge among community-dwelling older adults using self-report tools versus a brief functional assessment.

    • Pritika Dasgupta, Adam Frisch, James Huber, Ervin Sejdic, and Brian Suffoletto.
    • Epidemiology Data Center, Graduate School of Public Health, University of Pittsburgh, USA.
    • Am J Emerg Med. 2022 Mar 1; 53: 245249245-249.

    BackgroundIdentifying older adults with risk for falls prior to discharge home from the Emergency Department (ED) could help direct fall prevention interventions, yet ED-based tools to assist risk stratification are under-developed. The aim of this study was to assess the performance of self-report and functional assessments to predict falls in the 3 months post-ED discharge for older adults.MethodsA prospective cohort of community-dwelling adults age 60 years and older were recruited from one urban ED (N = 134). Participants completed: a single item screen for mobility (SIS-M), the 12-item Stay Independent Questionnaire (SIQ-12), and the Timed Up and Go test (TUG). Falls were defined through self-report of any fall at 1- and 3-months and medical record review for fall-related injury 3-months post-discharge. We developed a hybrid-convolutional recurrent neural network (HCRNN) model of gait and balance characteristics using truncal 3-axis accelerometry collected during the TUG. Internal validation was conducted using bootstrap resampling with 1000 iterations for SIS-M, FRQ, and GUG and leave-one-out for the HCRNN. We compared performance of M-SIS, FRQ, TUG time, and HCRNN by calculating the area under the receiver operating characteristic area under the curves (AUCs).Results14 (10.4%) of participants met our primary outcome of a fall or fall-related injury within 3-months. The SIS-M had an AUC of 0.42 [95% confidence interval (CI) 0.19-0.65]. The SIQ-12 score had an AUC of 0.64 [95% confidence interval (CI) 0.49-0.80]. The TUG had an AUC of 0.48 (95% CI 0.29-0.68). The HCRNN model using generated accelerometer features collected during the TUG had an AUC of 0.99 (95% CI 0.98-1.00).ConclusionWe found that self-report and functional assessments lack sufficient accuracy to be used in isolation in the ED. A neural network model using accelerometer features could be a promising modality but research is needed to externally validate these findings.Copyright © 2022 Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…