-
- HuismanThierry A G MTAGMEdward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA., Stephen F Kralik, Nilesh K Desai, Bettina L Serrallach, and Gunes Orman.
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA.
- J Neuroimaging. 2022 Mar 1; 32 (2): 191-200.
AbstractMitochondrial disorders represent a diverse and complex group of entities typified by defective energy metabolism. The mitochondrial oxidative phosphorylation system is typically impaired, which is the predominant source of energy production. Because mitochondria are present in nearly all organs, multiple systems may be affected including the central nervous system, skeletal muscles, kidneys, and liver. In particular, those organs that are metabolically active with high energy demands are explicitly vulnerable. Initial diagnostic work up relies on a detailed evaluation of clinical symptoms including physical examination as well as a comprehensive review of the evolution of symptoms over time, relation to possible "triggering" events (eg, fever, infection), blood workup, and family history. High-end neuroimaging plays a pivotal role in establishing diagnosis, narrowing differential diagnosis, monitoring disease progression, and predicting prognosis. The pattern and characteristics of the neuroimaging findings are often highly suggestive of a mitochondrial disorder; unfortunately, in many cases the wide variability of involved metabolic processes prevents a more specific subclassification. Consequently, additional diagnostic steps including muscle biopsy, metabolic workup, and genetic tests are necessary. In the current manuscript, basic concepts of energy production, genetics, and inheritance patterns are reviewed. In addition, the imaging findings of several illustrative mitochondrial disorders are presented to familiarize the involved physicians with pediatric mitochondrial disorders. In addition, the significance of spinal cord imaging and the value of "reversed image-based discovery" for the recognition and correct (re-)classification of mitochondrial disorders is discussed.© 2022 American Society of Neuroimaging.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.