-
Reg Anesth Pain Med · May 2022
Machine learning approach to predicting persistent opioid use following lower extremity joint arthroplasty.
- Rodney A Gabriel, Bhavya Harjai, Rupa S Prasad, Sierra Simpson, Iris Chu, Kathleen M Fisch, and Engy T Said.
- Anesthesiology, University of California San Diego, La Jolla, California, USA ragabriel@health.ucsd.edu.
- Reg Anesth Pain Med. 2022 May 1; 47 (5): 313-319.
BackgroundThe objective of this study is to develop predictive models for persistent opioid use following lower extremity joint arthroplasty and determine if ensemble learning and an oversampling technique may improve model performance.MethodsWe compared various predictive models to identify at-risk patients for persistent postoperative opioid use using various preoperative, intraoperative, and postoperative data, including surgical procedure, patient demographics/characteristics, past surgical history, opioid use history, comorbidities, lifestyle habits, anesthesia details, and postoperative hospital course. Six classification models were evaluated: logistic regression, random forest classifier, simple-feedforward neural network, balanced random forest classifier, balanced bagging classifier, and support vector classifier. Performance with Synthetic Minority Oversampling Technique (SMOTE) was also evaluated. Repeated stratified k-fold cross-validation was implemented to calculate F1-scores and area under the receiver operating characteristics curve (AUC).ResultsThere were 1042 patients undergoing elective knee or hip arthroplasty in which 242 (23.2%) reported persistent opioid use. Without SMOTE, the logistic regression model has an F1 score of 0.47 and an AUC of 0.79. All ensemble methods performed better, with the balanced bagging classifier having an F1 score of 0.80 and an AUC of 0.94. SMOTE improved performance of all models based on F1 score. Specifically, performance of the balanced bagging classifier improved to an F1 score of 0.84 and an AUC of 0.96. The features with the highest importance in the balanced bagging model were postoperative day 1 opioid use, body mass index, age, preoperative opioid use, prescribed opioids at discharge, and hospital length of stay.ConclusionsEnsemble learning can dramatically improve predictive models for persistent opioid use. Accurate and early identification of high-risk patients can play a role in clinical decision making and early optimization with personalized interventions.© American Society of Regional Anesthesia & Pain Medicine 2022. Re-use permitted under CC BY-NC. No commercial re-use. Published by BMJ.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.