• Clin. Orthop. Relat. Res. · Oct 2011

    Bupivacaine and triamcinolone may be toxic to human chondrocytes: a pilot study.

    • Hasan M Syed, Lora Green, Brandon Bianski, Christopher M Jobe, and Montri D Wongworawat.
    • Department of Orthopaedic Surgery, Loma Linda University Medical Center, 11406 Loma Linda Drive, Suite 218, Loma Linda, CA 92354, USA.
    • Clin. Orthop. Relat. Res. 2011 Oct 1;469(10):2941-7.

    BackgroundIntraarticular injections of corticosteroids combined with local anesthetics are commonly used for management of chronic pain symptoms associated with degenerative joint diseases and after arthroscopic procedures. Several studies suggest chondrotoxicity of local anesthetics whereas others report chondroprotective and cytotoxic effects of corticosteroids on cartilage. Given the frequency of use of these agents, it is important to know whether they are in fact toxic.Questions/PurposesWe asked whether (1) bupivacaine and triamcinolone acetonide, alone and combined, were chondrotoxic to chondrocytes in culture; (2) buffering of the reagents diminished toxicity of the bupivacaine and triamcinolone; and (3) the presence of the superficial layer of articular cartilage protects against toxicity.Materials And MethodsWe obtained cartilage from three patients undergoing arthroplasty. To address triamcinolone acetonide, bupivacaine, and combinatorial toxicity to human chondrocytes, we set up monolayer chondrocyte cultures (n = 8 wells per condition). The question of buffering was addressed by performing the same assays as above, but the reagents were buffered. An MTT assay was used to assess chondrocyte survival in the monolayer. We harvested 21 articular plugs from each of three patients (total 63 plugs) and exposed them to the same reagents as above, including the buffered reagents. A Live/Dead assay was used to determine chondrocyte survival.ResultsTriamcinolone acetonide, bupivacaine, and their combination were toxic to human chondrocytes in the monolayer comparisons. The addition of buffering did not mitigate chondrocyte death. With the intact superficial layer in the plug group, bupivacaine was not toxic as compared with for the control group; all the other reagents (triamcinolone, combination bupivacaine/triamcinolone, buffered bupivacaine, buffered triamcinolone, and buffered combination) produced chondrotoxicity.ConclusionsTriamcinolone induced chondrotoxicity in the articular plug and monolayer culture, whereas bupivacaine induced chondrotoxicity only in monolayer culture. The combined used of triamcinolone and bupivacaine did not show additive chondrocyte death in any arm. Buffering of bupivacaine increased its chondrotoxicity.Clinical RelevanceAlthough not necessarily reflecting in vivo conditions, our data suggest physicians should be cognizant of the potential in vitro chondrotoxicity of bupivacaine and triamcinolone when contemplating intraarticular administration.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.