-
Review
An insight into diagnosis of depression using machine learning techniques: a systematic review.
- Sweta Bhadra and Chandan Jyoti Kumar.
- Department of CS & IT, Cotton University, Guwahati, India.
- Curr Med Res Opin. 2022 May 1; 38 (5): 749-771.
BackgroundIn this modern era, depression is one of the most prevalent mental disorders from which millions of individuals are affected today. The symptoms of depression are heterogeneous and often coincide with other disorders such as bipolar disorder, Parkinson's, schizophrenia, etc. It is a serious mental illness that may lead to other health problems if left untreated. Currently, identifying individuals with depression is totally based on the expertise of the clinician's experience. In order to assist clinicians in identifying the characteristics and classifying depressed people, different types of data modalities and machine learning techniques have been incorporated by researchers in this field. This study aims to find the answers to some important questions related to the trend of publications, data modality, machine learning models, dataset usage, pre-processing techniques and feature extraction and selection techniques that are prevalent and guide the direction of future research on depression diagnosis.MethodsThis systematic review was conducted using a broad range of articles from two major databases: IEEE Xplore and PubMed. Studies ranging from the years 2011 to April 2021 were retrieved from the databases resulting in a total of 590 articles (53 articles from the IEEE Xplore database and 537 articles from the PubMed database). Out of those, the articles which satisfied the defined inclusion criteria were investigated for further analysis.ResultsA total of 135 articles were identified and analysed for this review. High growth in the number of publications has been observed in recent years. Furthermore, significant diversity in the use of data modalities and machine learning classifiers has also been noted in this study. fMRI data with an SVM classifier was found to be the most popular choice among researchers. In most of the studies, data scarcity and small sample size, particularly for neuroimaging data are major concerns. The use of identical data pre-processing tools for similar data modalities can be seen. This study also provides statistical analysis of the current framework with respect to the modality, machine learning classifier, sample size and accuracy by applying one-way ANOVA and the Tukey - Kramer test.ConclusionThe results indicate that an effective fusion of machine learning techniques with a potential data modality has a promising future for assisting clinicians in automatic depression diagnosis.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.