• Presse Med · Jun 2022

    Review

    Molecular Imaging in neuroendocrine neoplasias Review in Quarterly Medical Review.

    • Emanuel Christ, Damian Wild, and Julie Refardt.
    • ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland; Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland. Electronic address: emanuel.christ@usb.ch.
    • Presse Med. 2022 Jun 1; 51 (2): 104115104115.

    AbstractMolecular imaging, which uses molecular targets due to the overexpression of specific peptide hormone receptors on the tumour surface, has become an indispensable diagnostic technique. Neuroendocrine neoplasms (NENs) especially differentiated NENs or neuroendocrine tumours (NETs) are a rare group of heterogeneous tumours, characterized by the expression of hormone receptors on the tumour cell surface. This property makes them receptive to diagnostic and therapeutic approaches (theranostics) using radiolabelled peptides. Amongst the known hormone receptors, somatostatin receptors (SSTR) are expressed on the majority of NETs and are therefore the most relevant receptors for theranostic approaches. Current research aims to medically upregulate their expression, while other focuses are on the use of different radiopeptides (64Cu and 67Cu) or somatostatin-antagonists instead of the established somatostatin agonists. The GLP-1 receptor is another clinically relevant target, as GLP-1-R imaging has become the new standard for the localisation of insulinomas. For staging and prognostic evaluation in dedifferentiated NENs, 18F-FDG-imaging is useful, but lacks a therapeutic counterpart. Further options for patients with insufficient expression of SSTR involve metaiodobenzylguanidine (MIBG) and the molecular target C-X-C motif chemokine receptor-4 (CXCR4). New targets such as the glucose-dependant insulinotropic polypeptide receptor (GIPR) and the fibroblast activation protein (FAP) have been identified in NENs recently and await further evaluation. For medullary thyroid cancer 18-F-DOPA imaging is standard, however this technique is rather second line for other NENs. In this area, the discovery of minigastrin, which targets the cholecystokinin-2 (CCK2) receptors in medullary thyroid carcinoma and foregut NENs, may improve future management. This review aims to provide an overview of the most commonly used functional imaging modalities for theranostics in NENs today and in the possible future.Copyright © 2022 Elsevier Masson SAS. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…