• Anesthesiology · Nov 2006

    Randomized Controlled Trial

    Positron emission tomography study of regional cerebral metabolism during general anesthesia with xenon in humans.

    • Steffen Rex, Wolfgang Schaefer, Philipp H Meyer, Rolf Rossaint, Christian Boy, Keyvan Setani, Ulrich Büll, and Jan H Baumert.
    • Department of Anesthesiology, University Hospital, RWTH Aachen, Aachen, Germany. srex@ukaachen.de
    • Anesthesiology. 2006 Nov 1; 105 (5): 936-43.

    BackgroundThe precise mechanism by which the gaseous anesthetic xenon exerts its effects in the human brain remains unknown. Xenon has only negligible effects on inhibitory gamma-aminobutyric acid receptors, one of the putative molecular targets for most general anesthetics. Instead, xenon has been suggested to induce anesthesia by inhibiting excitatory glutamatergic signaling. Therefore, the authors hypothesized that xenon, similar to ketamine and nitrous oxide, increases global and regional cerebral metabolism in humans.MethodsThe regional cerebral metabolic rate of glucose (rcMRGlu) was sequentially assessed in two groups of six volunteers each, using F-fluorodeoxyglucose as tracer. In the xenon group, rcMRGlu was determined at baseline and during general anesthesia induced with propofol and maintained with 1 minimum alveolar concentration xenon. In the control group, rcMRGlu was measured using the identical study protocol but without administration of xenon. rcMRGlu was assessed after the plasma concentration of propofol had decreased to subanesthetic levels (< 1.0 microg/ml). rcMRGlu was quantified in 10 cerebral volumes of interest. In addition, voxel-wise changes in rcMRGlu were analyzed using statistical parametric mapping.ResultsXenon reduced whole-brain metabolic rate of glucose by 26 +/- 7% (from 43 +/- 5 micromol x 100 g x min to 31 +/- 3 micromol x 100 g x min; P < 0.005) and significantly decreased rcMRGlu in all volumes of interest compared with the control group receiving propofol only. Voxel-based analysis revealed metabolic depression within the orbitofrontal, frontomesial, temporomesial, occipital, dorsolateral frontal, and lateral temporal cortices and thalami. No increases in rcMRGlu were detected during xenon anesthesia.ConclusionsXenon induces metabolic depression in the human brain, suggesting that the inhibition of the glutamatergic system is likely to be of minor significance for the anesthetic action of xenon in vivo.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.