-
Eur J Trauma Emerg Surg · Oct 2022
Modification of the TRISS: simple and practical mortality prediction after trauma in an all-inclusive registry.
- Mitchell L S Driessen, David van Klaveren, de JonghMariska A CMACBrabant Trauma Registry, Network Emergency Care Brabant, Tilburg, The Netherlands., LeenenLuke P HLPHDepartment of Surgery, University Medical Center Utrecht, Utrecht, The Netherlands., and Leontien M Sturms.
- Dutch Network for Emergency Care (LNAZ), Newtonlaan 115, 3584 BH, Utrecht, The Netherlands. mls.driessen@lnaz.nl.
- Eur J Trauma Emerg Surg. 2022 Oct 1; 48 (5): 3949-3959.
PurposeNumerous studies have modified the Trauma Injury and Severity Score (TRISS) to improve its predictive accuracy for specific trauma populations. The aim of this study was to develop and validate a simple and practical prediction model that accurately predicts mortality for all acute trauma admissions.MethodsThis retrospective study used Dutch National Trauma Registry data recorded between 2015 and 2018. New models were developed based on nonlinear transformations of TRISS variables (age, systolic blood pressure (SBP), Glasgow Coma Score (GCS) and Injury Severity Score (ISS)), the New Injury Severity Score (NISS), the sex-age interaction, the best motor response (BMR) and the American Society of Anesthesiologists (ASA) physical status classification. The models were validated in 2018 data and for specific patient subgroups. The models' performance was assessed based on discrimination (areas under the curve (AUCs)) and by calibration plots. Multiple imputation was applied to account for missing values.ResultsThe mortality rates in the development and validation datasets were 2.3% (5709/245363) and 2.5% (1959/77343), respectively. A model with sex, ASA class, and nonlinear transformations of age, SBP, the ISS and the BMR showed significantly better discrimination than the TRISS (AUC 0.915 vs. 0.861). This model was well calibrated and demonstrated good discrimination in different subsets of patients, including isolated hip fractures patients (AUC: 0.796), elderly (AUC: 0.835), less severely injured (ISS16) (AUC: 878), severely injured (ISS ≥ 16) (AUC: 0.889), traumatic brain injury (AUC: 0.910). Moreover, discrimination for patients admitted to the intensive care (AUC: s0.846), and for both non-major and major trauma center patients was excellent, with AUCs of 0.940 and 0.895, respectively.ConclusionThis study presents a simple and practical mortality prediction model that performed well for important subgroups of patients as well as for the heterogeneous population of all acute trauma admissions in the Netherlands. Because this model includes widely available predictors, it can also be used for international evaluations of trauma care within institutions and trauma systems.© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.