• PLoS medicine · Feb 2022

    First dose ChAdOx1 and BNT162b2 COVID-19 vaccinations and cerebral venous sinus thrombosis: A pooled self-controlled case series study of 11.6 million individuals in England, Scotland, and Wales.

    • Steven Kerr, Mark Joy, Fatemeh Torabi, Stuart Bedston, Ashley Akbari, Utkarsh Agrawal, Jillian Beggs, Declan Bradley, Antony Chuter, Annemarie B Docherty, David Ford, Richard Hobbs, KatikireddiSrinivasa VittalSV0000-0001-6593-9092MRC/CSO Social & Public Health Sciences Unit, Glasgow, United Kingdom., Emily Lowthian, Simon de Lusignan, Ronan Lyons, James Marple, Colin McCowan, Dylan McGagh, Jim McMenamin, Emily Moore, Josephine-L K Murray, Rhiannon K Owen, Jiafeng Pan, Lewis Ritchie, Syed Ahmar Shah, Ting Shi, Sarah Stock, TsangRuby S MRSM0000-0002-2520-526XNuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom., Eleftheria Vasileiou, Mark Woolhouse, Colin R Simpson, Chris Robertson, and Aziz Sheikh.
    • Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom.
    • PLoS Med. 2022 Feb 1; 19 (2): e1003927e1003927.

    BackgroundSeveral countries restricted the administration of ChAdOx1 to older age groups in 2021 over safety concerns following case reports and observed versus expected analyses suggesting a possible association with cerebral venous sinus thrombosis (CVST). Large datasets are required to precisely estimate the association between Coronavirus Disease 2019 (COVID-19) vaccination and CVST due to the extreme rarity of this event. We aimed to accomplish this by combining national data from England, Scotland, and Wales.Methods And FindingsWe created data platforms consisting of linked primary care, secondary care, mortality, and virological testing data in each of England, Scotland, and Wales, with a combined cohort of 11,637,157 people and 6,808,293 person years of follow-up. The cohort start date was December 8, 2020, and the end date was June 30, 2021. The outcome measure we examined was incident CVST events recorded in either primary or secondary care records. We carried out a self-controlled case series (SCCS) analysis of this outcome following first dose vaccination with ChAdOx1 and BNT162b2. The observation period consisted of an initial 90-day reference period, followed by a 2-week prerisk period directly prior to vaccination, and a 4-week risk period following vaccination. Counts of CVST cases from each country were tallied, then expanded into a full dataset with 1 row for each individual and observation time period. There was a combined total of 201 incident CVST events in the cohorts (29.5 per million person years). There were 81 CVST events in the observation period among those who a received first dose of ChAdOx1 (approximately 16.34 per million doses) and 40 for those who received a first dose of BNT162b2 (approximately 12.60 per million doses). We fitted conditional Poisson models to estimate incidence rate ratios (IRRs). Vaccination with ChAdOx1 was associated with an elevated risk of incident CVST events in the 28 days following vaccination, IRR = 1.93 (95% confidence interval (CI) 1.20 to 3.11). We did not find an association between BNT162b2 and CVST in the 28 days following vaccination, IRR = 0.78 (95% CI 0.34 to 1.77). Our study had some limitations. The SCCS study design implicitly controls for variables that are constant over the observation period, but also assumes that outcome events are independent of exposure. This assumption may not be satisfied in the case of CVST, firstly because it is a serious adverse event, and secondly because the vaccination programme in the United Kingdom prioritised the clinically extremely vulnerable and those with underlying health conditions, which may have caused a selection effect for individuals more prone to CVST. Although we pooled data from several large datasets, there was still a low number of events, which may have caused imprecision in our estimates.ConclusionsIn this study, we observed a small elevated risk of CVST events following vaccination with ChAdOx1, but not BNT162b2. Our analysis pooled information from large datasets from England, Scotland, and Wales. This evidence may be useful in risk-benefit analyses of vaccine policies and in providing quantification of risks associated with vaccination to the general public.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.