-
- HungPeter Shih-PingPS0000-0002-6600-0201Division of Brain, Imaging & Behaviour Systems Neuroscience, Krembil Brain Institute, University Health Network, Toronto, Canada.Institute of Medical Science, University of Toronto, Toronto, Canada., Jia Y Zhang, Alborz Noorani, Matthew R Walker, Megan Huang, Jason W Zhang, Normand Laperriere, Frank Rudzicz, and Mojgan Hodaie.
- Division of Brain, Imaging & Behaviour Systems Neuroscience, Krembil Brain Institute, University Health Network, Toronto, Canada.
- Pain. 2022 Aug 1; 163 (8): 146814781468-1478.
AbstractChronic pain has widespread, detrimental effects on the human nervous system and its prevalence and burden increase with age. Machine learning techniques have been applied on brain images to produce statistical models of brain aging. Specifically, the Gaussian process regression is particularly effective at predicting chronological age from neuroimaging data which permits the calculation of a brain age gap estimate (brain-AGE). Pathological biological processes such as chronic pain can influence brain-AGE. Because chronic pain disorders can differ in etiology, severity, pain frequency, and sex-linked prevalence, we hypothesize that the expression of brain-AGE may be pain specific and differ between discrete chronic pain disorders. We built a machine learning model using T1-weighted anatomical MRI from 812 healthy controls to extract brain-AGE for 45 trigeminal neuralgia (TN), 52 osteoarthritis (OA), and 50 chronic low back pain (BP) subjects. False discovery rate corrected Welch t tests were conducted to detect significant differences in brain-AGE between each discrete pain cohort and age-matched and sex-matched controls. Trigeminal neuralgia and OA, but not BP subjects, have significantly larger brain-AGE. Across all 3 pain groups, we observed female-driven elevation in brain-AGE. Furthermore, in TN, a significantly larger brain-AGE is associated with response to Gamma Knife radiosurgery for TN pain and is inversely correlated with the age at diagnosis. As brain-AGE expression differs across distinct pain disorders with a pronounced sex effect for female subjects. Younger women with TN may therefore represent a vulnerable subpopulation requiring expedited chronic pain intervention. To this end, brain-AGE holds promise as an effective biomarker of pain treatment response.Copyright © 2022 International Association for the Study of Pain.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.