• BMC anesthesiology · Feb 2022

    miR-424 inhibits apoptosis and inflammatory responses induced by sevoflurane through TLR4/MyD88/NF-κB pathway.

    • Zeyu Li, Tao Wang, and Yonghao Yu.
    • Department of Anesthesiology, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, 301800, China.
    • BMC Anesthesiol. 2022 Feb 23; 22 (1): 52.

    BackgroundSide effects of sevoflurane in anterograde and retrograde memory have been widely reported. However, there is no convincing evidence that sevoflurane directly causes the development of neurotoxicity. miR-424 has the potential to regulate the neurotoxicity caused by isoflurane anesthesia, and it has a complementary sequence with the 3'UTR region of TLR4. Thus, our study aims to explore whether sevoflurane directly causes neurotoxicity, the effects of miR-424 on sevoflurane induced apoptosis and inflammation, and the underlying mechanism.MethodsSevoflurane effects were identified both in mouse and in PC12 cells. Western blots and ELISA were used for protein detection, while micro (mi) RNA expression was measured with RT-qPCR. Dual luciferase reporter assays were employed to study the interaction between miR-424 and Toll-like receptor 4 (TLR4) using miR-424 mimics and TLR4 over-expression.ResultsSevoflurane stimulated expression of Bax2 and Caspase-3, and increased apoptosis ratio both in vivo and vitro (P < 0.05). Inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, were up-regulated by sevoflurane, while IL-10 was downregulated (P < 0.05). Sevoflurane treatment enhanced the phosphorylation of NF-κB, and up-regulated the expressions of TLR4 and MyD88 (P < 0.05), which demonstrated that sevoflurane inhibited proliferation and differentiation of neuronal cells by activating TLR4/MyD88/NF-κB signaling both in vitro and vivo. However, up-regulation of miR-424 attenuated the negative effects of sevoflurane by targeting the 3'-untranslated region (UTR) of TLR4 and inducing the degradation of mRNA (P < 0.05).ConclusionsIn vitro, sevoflurane induces activation of the endogenous TLR4 signaling pathway, thereby promoting apoptosis and inflammatory cytokine expression. Exogenous TLR4 acts as an agonist to stimulate TLR4 signaling, whereas miR-424 inhibits both endogenous and exogenous TLR4 signaling, thereby preserving proliferation and differentiation of neuronal cells.© 2022. The Author(s).

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.