• Critical care medicine · Sep 2022

    Tidal Volume-Dependent Activation of the Renin-Angiotensin System in Experimental Ventilator-Induced Lung Injury.

    • Xinjun Mao, Katharina Krenn, Thomas Tripp, Verena Tretter, Roman Reindl-Schwaighofer, Felix Kraft, Bruno K Podesser, Yi Zhu, Marko Poglitsch, Oliver Domenig, Dietmar Abraham, and Roman Ullrich.
    • Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria.
    • Crit. Care Med. 2022 Sep 1; 50 (9): e696-e706.

    ObjectivesVentilator-induced lung injury (VILI) is a major contributor to morbidity and mortality in critically ill patients. Mechanical damage to the lungs is potentially aggravated by the activation of the renin-angiotensin system (RAS). This article describes RAS activation profiles in VILI and discusses the effects of angiotensin (Ang) 1-7 supplementation or angiotensin-converting enzyme (ACE) inhibition with captopril as protective strategies.DesignAnimal study.SettingUniversity research laboratory.SubjectsC57BL/6 mice.InterventionsAnesthetized mice ( n = 12-18 per group) were mechanically ventilated with low tidal volume (LV T , 6 mL/kg), high tidal volume (HV T , 15 mL/kg), or very high tidal volume (VHV T , 30 mL/kg) for 4 hours, or killed after 3 minutes (sham). Additional VHV T groups received infusions of 60 μg/kg/hr Ang 1-7 or a single dose of 100 mg/kg captopril.Measurements And Main ResultsVILI was characterized by increased bronchoalveolar lavage fluid levels of interleukin (IL)-6, keratinocyte-derived cytokine, and macrophage inflammatory protein-2 (MIP2). The Ang metabolites in plasma measured with liquid chromatography tandem mass spectrometry showed a strong activation of the classical (Ang I, Ang II) and alternative RAS (Ang 1-7, Ang 1-5), with highest concentrations found in the HV T group. Although the lung-tissue ACE messenger RNA expression was unchanged, its protein expression showed a dose-dependent increase under mechanical ventilation. The ACE2 messenger RNA expression decreased in all ventilated groups, whereas ACE2 protein levels remained unchanged. Both captopril and Ang 1-7 led to markedly increased Ang 1-7 plasma levels, decreased Ang II levels, and ACE activity (Ang II/Ang I ratio), and effectively prevented VILI.ConclusionsVILI is accompanied by a strong activation of the RAS. Based on circulating Ang metabolite levels and tissue expression of RAS enzymes, classical ACE-dependent and alternative RAS cascades were activated in the HV T group, whereas classical RAS activation prevailed with VHV T ventilation. Ang 1-7 or captopril protected from VILI primarily by modifying the systemic RAS profile.Copyright © 2022 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.